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1. Introduction.

In the field of Fracture Mechanics not very much theoretical work

has been done in order to assess analytically the three-dimensional

stress character which prevails at the base of a stationary crack. As

a result, most of our current design criteria are based on already

existing two-dimensional solutions and therefore are in general

inadequate. For example, the common experimental observation of a

change from ductile failure at the edge to brittle fracture at the center

of a broken sheet material has so far defied analysis. Yet an orderly

theoretical attack on the problem can provide important guidance to

this and other phases of fracture research.

The mathematical difficulties, however, posed by three-dimensional

fracture problems are substantially greater than those associated

with plane stress or plane strain. Be that as it may, the author would

like to investigate the subject further at least within the theory of

linear elasticity. While he recognizes the fact that this theory can-

not include the nonelastic behavior of the material at the crack tip

per se, it can evince many characteristics of the actual behavior of

a cracked plate, including those due to thickness. Thus the theory of

elasticity is a logical fountainhead for detailed theoretical study.

I! ,
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2. Histo-ical Development.

There exist in the literature very few analytical papers that deal

specifically with the three-dimensional stress character at the base of

a stationary crack. Moreover, in their present form these papers are

not only incomplete but also contradictory. As a result, much con-

troversy and many doubts have been raised. It is appropriate, therefore,

to discuss these papers and their respective results in chronological

order.

In 1972, Benthem, using the method of separation of variables*,

was able to solve for the stress distribution in the neighborhood of

the corner point" of a quarter plane crack. His results [2] show that

the stresses there behave like p , where 0.500 < a< 0.709. In order to

obtain the order of the singularity, Benthem had to trancate an infinite

system which, in turn, he solved for the eigenvalues numerically. This

approach, however, raises three important questions: One, is the

solution really separable, particularly in 8 and * ? Two, is the
solution thus obtained complete? Three, should the numerical deter-

mination of the singularity from a truncated system be trusted?

Unfortunately, Benthem has provided no answers to any of the above

important and difficult questions.

A few years later, Folias, using a method developed by Lur't [3]

ad. the application of Fourier Integral Transforms, was able to solve

(4] Navier's equations for a more complicated problem, that of the

*This method was fully articulated by M.L. Williams [1] for classical
planar elasticity'in order to establish the singular behavior atre-entrant corners.**That is the point where the crack front meets the free surface of

the half space.

_... .............
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3-D Griffith crack (see Figure 1). The integrals were subsequently

expanded asymptotically and the stress field, valid in the very inner

layers* of the plate, was recovered. From the results, one concludes

that in the very inner layers of the plate:

(1) the stresses possess the usual singularity,

(2) the stresses posses the usual angular distribution,

(3) the stress intensity factor KI is a function of z ,

(4) exact plane strain conditions exist only on the plane z - 0 ,

(5) a pseudo plane strain state exists and the equation

is satisfied,

(6) as the plate thickness 2h , the plane solution is recovered,

0 (7) as Poisson's ratio v - 0 , the plane stress solution is recovered.

Furthermore, he was able to show that at the corner the stresses are

proportional to

p- + 2v) f
13

AIn order to recover the value of the singularity, Folias solved analyti-

cally a difference-differential equation. Unfortunately, because of
the enormous difficulties which the integral representations presented

Ii at the corner, he was unable at the time to recover the functions

f. (e,0) explicitly.

*The reader should note that the asymptotic expansions are only valid
for (z/h) - 1 and for c/h - 1. This is because h was assumed
to be very large so that a perturbation about the well-known plane-
strain solution could be made.
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It should be emphasized that Folias' s main result at the corner

should be interpreted as "the singularity at the corner can at most be

of the order ( + 2v)" . This is because the functions f. 0O,0)
13

could very well be of the type that do vanish* in th" neighborhood of

the corner point. Thus Folias's result may or may not be in contra-

diction with Benthem's.

Researchers in the field of Fracture Mechanics, however, were

unwilling to accept the possibility of an infinite displacement field

on the basis of physical intuition. Consequently, the results were

considered highly controversial and the following two legitimate questions

were raised**: Is the solution really complete? Two, do the series

representations converge? Unfortunately, Folias provided no answers

to any of the above questions.

In 1976, Kawai [7], using the method of separation of variables

was able to obtain an alternate solution to Benthem's problem. Although

the method of approach is essentially the same as that of Benthem's,

his results are definitely contradictory***. His results show that at

the corner the stresses behave like p- ,where •a < 1. In

determining the singularity, Kawai used the collocation method in order

to satisfy the three boundary conditon on the free surface. Thus, as

in Benthm's case, the same questions apply to this work also.

"The reader should note that this result was actually obtained by
'marching out' the solution from the inner to the outer layers, and as
a result such a hypothesis may not be totally unreasonable. See also
comments on p. S.
**See Discussion of paper by Benthem and Koiter [5] and author's Closure

• , [6].***Mathematically, Kawai's method of construction of the solution is

more systematic than that of Benthem's.
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A few months later, Benthem discovered that his previously reported

solution was incomplete and that his new results [8] now read

~ -a

aij p with 0 a< .

Here again, the same questions raised during his previous work apply

too.

Finally, in 1977 Kawai [9] reported an error in his previous

analysis and although the correction affected slightly the value of

a the trend essentially remained the same.

In the meantime, Folias also discovered that his solution of the

difference-differential equation was not quite complete either*. The

correction, however, does not directly alter the basic result at the

corner.

It is interesting to note that Kawai does recover the same sin-

gularity that Folias reported. The singularity (--T -2v), however, disappears

as he considers more and more terms in his collocation scheme but at

the same time he experiences convergence problems. This observation

strengthens, perhaps, the hypothesis that Folias's f.ii (8,O) functions

do indeed vanish in the neighborhood of the corner point and that most

likely are needed in the very inner layers of the plate. The later has

also been observed by Newman [10] for (c/h) ratios less than one,

which is comparable with the asymptotic expansion used by Folias.
9

'I

•This is not to be confused with the question of completeness of
the solution to Navier's equations, i.e. eqs. (52)-(54) ref. [4].
The corrected result to eq. (85) of reference [4] is given in Appendix I.

.1
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Be that as it may, the presence of a third solution obscurred the

issue even further and essentially raised more questions than gave

answers. So the controversy still remains.

I'

I

A,
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3. Purpose of Present Work.

In view of the preceding, it is evident that mathematical rigour

becomes essential if one is to avoid any possible pitfalls. As a

result, the author decided to seek the answers to the following two

important questions first:

(i) Is the solution of this notoriously difficult problem

unique? And if so, under what conditions?

(ii) Is the solution to Navier's equations as given by the

author in reference [4], i.e. eqs. (52)-(54), general

enough to represent the solution of this practical

problem?

The answers to both of the above questions were given by Prof. Calvin

Wilcox.

First of all, he was successful in proving [11] that a displace-

ment field that satisfies the condition of local finite energy is

unique. This of course is quite a departure from our traditional

2-D fracture mechanics thinking, for the displacements now can 1e -

allowed to be singular. Consequently, one may not apriori assume them

to be finite as it is customerily done. In general, such an assumption

bmakes the class of solutions too restrictive and, as a result, one may

not find a solution to the problem. On the other hand, the solution

could very well give finite displacements everywhere: Be that as it

may, physical intuition should be used with extreme caution.

Second, he was able to show [12] that the Fourier integral expres-

sions* representing the general solution to Navier's equations are

.*f *See equations (52)-(54) of reference [4].

S.. o -j
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complete and, furthermore, the 'symbolic method' used is justifiable.

In order to prove this, he used a double Fourier integral transform in

x and y and subsequently a contour integration to recover precisely

the same expressions as those reported by Folias in reference [4].

Finally, it remains to determine explicitly the stress field

ahead of the crack tip and throughout the thickness of the plate.

In reference [4], the author, by the use of analytic continuation,

attempted to 'march out' the solution from the inner to the outer

layers of the plate. Although in principle this seems feasible, in

practice it is very difficult and most of all tedious. Moreover,

questions of convergence will inevitably be raised. As a result,

in this paper we will use an alternate and more elegant approach in

order to complete the problem.

By finding the biorthogonal relation for the eigenvectors, we

will set up a double integral equation for the unknown function v ,

which, physically, represents the projection of the displacement v

onto the xz-plane. The advantages of this new approached over that

of reference [4] are:

(i) we are now seeking the solution to one equation only,

(ii) the unknown function is real and furthermore has physical

meaning,

(iii) the kernel of the integral equation is independent of the

shape of the crack*.

*In this analysis we restrict ourselves to planar and symmetric cracks
subjected to mode I loadings.

A
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4. Formlation of the Problem.

Consider the equilibrium of a homogeneous, isotropic, elastic

plate which occupies the space lxi < - , I y < - , IzI < h and

contains a plane crack in the x-z- plane (see Figure 1). The crack

faces, definedby lxi < c , y- 0, z4h , and the plate faces

Izi - h are free of stress and constraint. Loading is applied on the

periphery of the plate lx , IY - and is given by

ax" "Y Ty= 0 , ay -

In the absence of body forces, the coupled differential equations

governing the displacement functions u, v, and w are

m a a a 2 l.(3
-7T(t , ry", ze + Vz Cu,v,w) -- ( 1)-C)

where V2  is the Laplacian operator, m 1 1/v , v is Poisson's ratio,

au av +w
ax Ty z (4)

bl and the stress-displacement relations are given by Hooke's law as:

u + e ... , " + ,. . (S)- 10)

with G being the shear modulus.
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As to boundary conditions, one must require that at:

jxl < c , y -0±  , Izi 4 h: T -, - 0 (11)

lzI h : T xz ryz  az a 0 (12)

lyl and all x : T z - o = (13)

IxI - : ax" x, TVMzx o . (14)

It is found convenient to seek the solution to the crack plate

problem in the form

u a u (C) etc., (15)

where the first component represents the usual "undisturbed" or

"particular" solution of a plate without the presence of a crack. Such

a particular solution can easily be constructed and for the particular

problem at hand is

' u(p) 70(MO )

v (P) -- [ - (m-l) 2]4*T y (16)!I-
,W(P). (m-2) 7t

where

3A- (m-l) - 3(m-1) 2.
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S. Method of Solution.

The complementary solution to Navier's equations, subject to the

corresponding boundary conditions (12) and (13), is given by reference

[41 as:

i) comlementaxy displacoeents*

c) {(P + Q, + 1z z2sQ1 ) -slylFO c) {C 1  M+T Q

" - r, '  cos V(h)[(m-2'v cos2 (h)) cos(C z) - (17)

- iioz sm(BOz)] + n n cos( z)lsin(xs)ds
n-l

c) 0 3m-1 Q_ 1 e-slyl

1 ~r~42~y~ 2(18)
+ 1 r e s cos(0,h)(Cm-2 * m cos2 (S h))cos(O z) -

" mVz sin(BVz)]- n n /7 e" n cosanz)) cos(xs)ds

c(c) /S +jih) c

2

V 19

[C(2n - 2 m cs2O h)sinCB Vz) - mo Vz cosCOvz)]) cos~xs)ds

*These complementary displacements represent a 'general enough', or
'complete', solution for the satisfaction of the remaining boundary
conditions. For a discussion of this, see reference [12].
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with corresponding stress:

(ii) cMIlmentary stresses

C (c) * F r 0 2 e 7 ~u. Co~s (Bh) [sin 2 C8h)cos(Bvz)e8vz sin(Ovz)] * (20)

COS(xs)ds

T XZ (c) 2m o -r V oiy iD 2 (8 h s n O Z
-f- Fn~ -i o COSz vh) [cos (V sn(,

0 s+V (21)

+ 0 z cos(B Vz)] n Sna e ~ sin(anz)} sin(xs)ds.

T (C) 2 0 e /47'OIYI 2
(-m- E V rV s cos(Bvh)[cos (S\hM in(Svz)

(22)

a s se
+ * V z cos(O Vz)] n 7 sin(anz))}cos(xs)ds.

==Ii
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ax(c) 12 sy
Fn ~1 I is lTsz T Ql)e.Sy

.2 'O 8r ~ os (0)h) cos (B z)m-Z v v ss+8~

r ~ cosCB~h)[(m-2+m cos(Bvh) co~ (2)

-nI8 z sin($ Z)]

+ S n se -A 1cos(a n z)) cos(xs)ds

0r(c) 2m 1 2 2Q .-slyj
F { &~ J ~iQl spl Y I SQJ =M+r5 zQ)
0

(24)

1/7 07 y'+ 2+ - r~ i- e V cos (Bh) (m- 2+m cos 2(Ovh)) cos(S Z)

v-i

- ~Sn 42 ~yIcos(t z)) cos(xs)ds
n-i

no
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.2sp .z zsQ1 2l l

.G " { 2.. 4 )Q1  2 + +

2 O-sZOIy 2
- _ I  r e cos($,h) [(m-2+m cos (8 h)) cos(Oz) -

- z sin($Vz)] (25)

CD 22 2 _~7 j
- zsZc --v's lyl

+ I % -~.e n cos(a n z)) sin(xs)dsnal

where the ± signs refer to y > 0 and y < 0 respectively and the

constants P1 p Q1 9 rv and Sn are to be determined from the remain-

ing boundary conditions. Moreover, an  - (n-1,23... a

are the roots of the equation

sin(ZB0h) -- (2B ) (26)

This equation has an infinite number of complex roots which appear in

groups of four, one in each quadrant of the complex plane and only two

of each group of four roots are relevant to the present work. These

are chosen to be the complex conjugate pairs with positive real parts.

The only real root 8V - 0 must be ignored*.

Ma

.I" ,*The first few roots are tabulated in Appendix II.
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By direct substitution, it can easily be ascertained that the

above complementary displacements satisfy Navier's equations and

furthermore the corresponding stresses ac) ,T(C) (c) do vanish

at theplate faces z - ±h.

Finally, if we consider the following two combinations to vanish'

2m j LcosCa h)[ sin 2 0h co v ) z sin(Sz)

(27)

+ I 4m .. _ j . 0nalS+a s "z+-M7Va s

and

2 r cos(8ah) [ (m-2+m cos2 (h)) cos($ z) - mS z sin(B z)]
Val (28)

2s2a 2  2 2
O s coS(nZ) S C 2s 2Q - 2sP I - 2 M -QI 0

for all I z 4 h , then two of the remaining stress boundary conditions

are satisfied automatically, i.e.

,(c)

S(c) c) = 0 for all x, jzj 'h and y= 0,; . ,, yz•

We will suppress for the time being the satisfaction of the last

boundary condition and will focus our attention to the continuity

conditions.

As it can easily be seen, all continuity conditons are satisfied

if one considers the following two combinations to vanish

wNotice that the derivative of eq. (27) with respect to z leads to the
integrand of eq. (22).
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F M- , I SZQ 1

(29)
1 r2

+ M - cos(Bvh)[(2m-2+m sin (Bvh))cos(Bvz)
V.1 S

4m r
+ ma z sin(Ovz)] + -m-7 cos(xs)ds - 0

Ixi > c ,V IzI < h

andi

4m + m G r V  [(l + cos 2 (a h)) cos(O z)
o (30)

" 8vz sin(OVz)]} sin(xs)ds = 0 ; jxi > c ,yIzi < h

which by Fourier inversion lead to:

-m-i Q1 I sZ2Ql +  1 cs(Bh)
s P1 " V1 -s"

• [(2m-2+m sin 2(Vh)) cos($ z) + ma8z sin(V z)] (31)

Go r ~r
+ m---2 -4m 71 v( ,O,z) cos(s&)d6

*- 
ITr

and *4

The reader should note that eqs (31) and (32) automatically satisfy
eq. (28).
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-4m 2m v 2
.TI + M--7 a c5(1vQh1l + cos (0 h))cos(a Z)

-8 sin($ z)] - 3u .1 v
72 f c  a

(32)

0 2 (j.)Y. sin(sg)dt= -- 0 2~ - 5ifl=O

L s v( ,O,z) cos(s&)d .f0

Adopting next the following definitions

Z(1)(z) -(8 h)is h sin($ h) cos(O z) - a z cos(Ovh) sin(Ovz)] (33)

V() 2

Z3(z)--(8 h)2 [ h sin($ h) cos(S z) - 8 z cos(Bvh) sin($vz)] (34)
V () aV V V V VVV

- 2(0,Vh) 2cos(avh) cos (avz)

f(l) 2h) m-2.. J av -1 S2( 2 Ts -) - a vi cos(s&)dE (35)

f( 3 )(Z) L v cos(s&)d - 2 m-2 Qlh 2  (36)

b equation (32) and the second derivative of equation (31) with respect

to z become

m- V- 3 (z) o v(C,O,z) cos(s)d& (37)

+ 2m h2
M Tr Q,
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and*

" - r VZ)(1)  (3)

Vh (Z + V Z)~

Val s

2h2 3 2v -s 2 V) cos(s )dt (38)

+ 2,() Qh 2

respectively, which upon simplifying one has

r (3) ) (Z)  fC(z)
= 3 (39)

Next, following reference [13], we can construct the biorthognal

relations

wf4 ) (Z) - *z cos(a8h) sin(oBz) + O.h sin$*h) cos(Bz) (40)

and

v (z) - *z cos(s*h) sin($*z) + [Oth sin(s*h) (41)

- 2 cos(s*h)] cos(SV*z)

where P. stands for the complex conjugate of the S. roots. The

orthogonality condition now reads

*Notice that the continuity conditions are to be satisfied in the
interior of the plate only.
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r~ hr' *(2 r 21 (1) I
* *(4) (n) (2)W )d

V-1 s E-h[k Wk(T 0) 1 z(3 (n)

(42)

fh (n) ( )] (n) -1 j ]dn

or

1( * (4) *CT1(-) eK = f .h (WC 4 )(n) f(1)(Cn) + [2 W (n~) - W - (ni)]

s4 e v V V
(43)

f (3) (n)}dn(

where for simplicity we have defined

-~ Ih (W*4) (n) Z ( 1) (n) + (4) -,n W*(2)(n

(44)

Sz(3) (n)}d .

Finally, in view of equations (33)-(36), (40)- (41) and (43)-(44),

one finds after some simple calculations that

eXV 4 (1vh)2 cos4 (0,h) (45)

and
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r + 2 m-2 1c fh

eKv 4) = s ± i rs V( '0'i) cos(st)

({hs) 218h sin(B h) cos( rn) - n cos(a h) sin(S n)

+ 2 M-1 cos (a h) cos (a n)] (46)

C-m' v v

+ (bsV)2[3h sin (0 vh) cos(avn) - vn cos(s h) sin(vn)

+ 2 cos(Bvh) cos(8vn)]) dn dE .

Similarly, from equations (27) and (32), we find that

+ 2anh) 2 - c v(E,O,n)cos(s) cos(ann) dn d& (47a)I 0 f-hn

and

m+1 (sh) h v(E,0,n) cos(s&) dn d& . (47b)Q,7t 0 -h

Returning now to the last boundary condition, we require that*

*

~*Whnere we have made use of eq. (28).

i,
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- r cos(B h[( + cos ( Ih)) cos(Oz)

- z sin($ v z)]

1 s 3 s 2 2

s X [ " ] cos(avh)[Cm-2 + m cos (Bh)) cos(8Bz)
MV 

'(48)

- m 0a z sin(O z)]

S s(s2 +a2) 2

(s+ Co a )

cos(xs) ds - z ; zj < h, IxI < c

which, upon using the relations (46)-(47) and interchanging the order

of integration, can also be written in the form of a double integral

equation i.e.,

z {-+ v(EI,01 y- H I-El ;n,z] dndE

faes

b1 r _1

+ {-I v(CO,4n) -m_ H [-] dnd

crack

faces

- 0 IzI 4 h , IxI < c
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.where

H1 [ Ix-fl ;n,z] .m -Ivh 2 cos(Bvh) siC(Bz)

+ 5Bhsin(S h) si(0,vz) + Bvz cos(Bvh) cos(o~z)]

*{avT- K [BI-El [Ovh sin(ovh) cos(Bvr)) - Bari cos(ovh) sin(Bvin)

+ 2 Co($hnCs$i)

+ 02 Jx KO[Ovlx'I ] dx' - [$ ,h sin(Bvh) cos(B Ti)

0

-Bl cos(a vh) sin(B v r) + 2 cos(Bvh) cos($vrO]}

(SO)

m 1 m- cas(a h) sin($ z) * Bh sin(ovh)
rn v e [- v v v

B2h 2

si(Bz v z cos(Ovh) cos(ovz)] Q VT ~K 0  [OvIx-E I

2h22

+ 2h2  OBh sin(Ovh) cos(B rn) - Svn cos(Bvh) sin($ n)

+ 2 (-4 cosC(a h) cos (o n)O + [S3h B EIK[v _

(h sin(B h) cos(B n1) 0 n~f cos(O~h) sin(B ri) *2 cos(ovh) Cos($ i]

and
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H 2ct

n
-a2  2at

n-- K [a,[a XE
X-E 0 laJx-_J] I x-Wjx-Q)K a~~I](1

2
S2 % ) cos (a n) sin (az)

(x~3 2(x-E) n n

Finally, integrating once with respect to x and z one finds*

c-" 1rac

faces

n=l cracl

faces (52)
rr im+l,11 f _ v( ,O,n)} -4 -, [---] dndC

crafaces

a0
- xz ; jxj <c, Izi <h

We have reduced, therefore, the problem to that of the solution of a

two-dimensional singular integral equation for the unknown function

v(&,O,n). This solution will be discussed in a subsequent paper.

It is interesting to note that equation (49) is also applicable to

planar cracks of arbitrary shape that lie on the x-z-plane and are

symmetric with respect to both x and z -axes**.
*4

*The reader should notice that the function v(&,O,n) has a 7 sign also.
*The same method of solution may also be used in order to derive a mnuch
more general integral equation which applies to any arbitrary crack shape
or void. This matter is currently under investigation and the results will
be reported in another paper..1

• ' ...... ..~~j _ _
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Perhaps it is instructive to point out some of the

advantages of the present formulation over that of reference [4]. These

are:

(i) we are seeking the solution of one integral equation

(ii) the unknown function is real and has physical meaning

(iii) the unkown function can be related directly to experi-

mental observations

(iv) the formulation applies to a large class of planar

crack problems

VJ

I.
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6. Solution to Navier's equations.

I Without going into the mathematical details, we may now write
the displacement functions ucc) , v c) and w(c) in terms of the

unkniown function v (&,O,n) , for IxI < c

u (C ) "( ,~ r ) 1 - X --h( x Gl 3 x +yl

71 2[ x- dn dC

ax (x-0 )Z1y

i-[c Ih  a C2N
±Ty vCfOn) • d& dn
-c -h 0s3)

±~ if am dn d d(

v(c) " yhl ylz  m+l a [(X-E)Yl z

1 2h2  2 2 2 lyl n d&

!i1 C lh  C (S4)

-~~~~~~ vt Xi dn d .. . ... lt IIII . . II IIIIIIIIIII I
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(C) ihc, .1 rx-z dJ . d
W (x-.) n) L

h (55)

~JhJ az +0dcl

where for simplicity we have adopted the following definitions:

N 2E n I- 2  COSY zcosQii (56
an

m z_ ~+ cos2 ,h) cosO,,hcosaz

22

Nz v c0(0~vLX sinyvz f hsn~ O~1- ~i o0~ i~

+ 2 cosoh coso Tn])

and



! 7,

J 27

M-4 I -.z cosovh cosovz C - 7 IoC0[0 X-w2+Y 2l

[ h sinOvh cos8vn - Ovr cosovh sinvn + 21%1-) cosOvh cosov]

(58)

+O2 cOi ,,(x-9)z+Jy Z] • [Oh sinxh cos - ncosBvh sino

* 2 cosovh cos n]) •

In view of the above, it appears that the solution may not be

separable either in cylindrical or spherical coordinates.

Finally, one may express the total strain energy stored in the

system to be:

h c
W-- f J { (v-v-)y o dxdz. (59)

-h -c

a.

i
4t .'.



7. Discussion

Although we have put forth a considerable amount of effort to solve

the double singular integral equation, we have not as yet been successful

in recovering, explicitly, the unknown displacement function v (x, o, z),

valid throughout the thickness of the plate. This is an extremely difficult

problem where physical intuition can be misleading.

At present we have developed two methods which in principle should

give us the desired solution. Unfortunately, in order to recover the

corner singularity, one is forced to sum up, analytically, a double series

of complex eipenfunctions. This is a task of monumental difficulty, for

the algebra is tedious and long.

* II'
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APPENDIX I.

To find the complete homogeneous solution of equation (82) of

reference (4], we proceed as follows.

Assume first a solution of the form

f(h) (1+4) M (1-;)2-2/m G(r)

where G(;) is an arbitrary function of 4 . Next, substitute into

homogeneous difference-differential equation to find

1-;,,)3-2/'n Gt;) + (1+)3 "2/m G'(-4) - 0

from which one may now deduce that:

n 3-2/m ( ) dG(c.) I Z a+l (l+;..) d; + co0

or

Z2n.2 a-3 2 n+2;2n 3;-C)
;.no GC) 2n+1 TS--72 21

I
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APPENDIX II

The roots of the equation sinC(28h) - - (20 h).

The equation has an infinite number of complex roots which appear

in groups of four. However, as it was pointed out in the text, for

this analysis only the roots with positive real parts are pertinent

and furthermore, the only real root OV - 0 must be discarded. Thus,

if we define the roots 82,04,86,... to be the complex conjugates of

the roots 81,83,85,..., then by setting

28vh -xv + iyv v - 1,3,5...

and using a Newtom-Rampson numerical method one finds

V X VV

1 4.21239 2.25073

3 10.71254 3.10315

5 17.07337 3.55109

7 23.39836 3. 85881

etc.

Furthermore, the asymptotic behavior of the roots for large v, i.e.,

for v - 15,17,19,..., is given by the following simple relations

., y , c o s [ Cl 1

V
-p

-------------------------------------
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PART I I

PARTIAL THROUGH CRACK IN A PLATE

OF FINITE THICKNEX
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NOTATION

2 32 a2
D 2+ 2ax 2  ay2

3x 3
a- a

3T

2 322y

2 
a22 +2 2 2
3x ay 3z

E Ye mg's modulus

EG -

2(l+v)

h thickness of the plate

1
m
r -V

s- Fourier transofrm parameter

U, v, w - displacement functions

uC) (C) (C) - displacement functions due to the comple-
mentary problem

() (P) .(P)
u) (, v (, - displacement functions due to the particu-

lar problems

x, y, z - rectangular cortesian coordinates

a n nw/h n - 1, 2, 3,~n

t 8U- roots of the eq. sin C h) = ($vh)

Sy ' Snroots of the eq. sin (y h) = -(yvh)

r , rp , sn  "coefficients as defined in text

e, 3u .3v 3w

v - Poisson's ratio



axt ay, az , TXYJr ,z yz stress components

(C) (C) (C) (C) (C) C(C) = stress components due to the comple-
x y z xy xz yz mentary solution

(P) (P) (P) (P) (P) (P)a x( , a( )  ) ( P a P XP a a stress components due to the particulary ' z 'xy 'xz yz solution

U- uniform applied stress0

A q

I



I. INTRODUCTION

One of the problems in fracture mechanics which apparently has not

received extensive theoretical treatment is that concerning the effect of

a partial through crack upon the stress distribution in a plate of finite

thickness. This lack of interest is primarily due to the fact that three

dimensional problems present mathematical complexities which are substan-

tially greater than those associated with plane stress or plane strain.

However, it is now possible*to study this complex phenomenon which has

defied researchers for some time.

II. FORMULATION OF THE PROBLEM

Consider the equilibrium of a homogeneous, isotropic, elastic plate

which occupies the space lxi < - , jyj < , 0 < z < h and contains

a plane crack in the xz-plane. The crack is elliptical in shape and is

defined by the inequality

.2 +z 2
c a

The plate faces z-0 and z-h are free of stress and constraint. Load-

ing is applied by the periphery of the plate lx, lyl 4 and is given

by

ax M Txy - Tyz - 0 , a y - U0

In the absence of body forces, the coupled differential equations

governing the displacement functions u , v and w are:

-2- + V2u" 0 (2)

mO + V2 -0(3
m-2 ay

m - e+ V2w-0 (4)
m-2 az

*See references [1,2 3.
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where

e D + L + (5)
and the stress-displacement relations are given by Hook's law as:

or - 2G {T +u A_Tx m -2 (6)

a,- 2G{21,+ -yL (7)

9y m-2

az-2GfL + -L)(s

xy G ( a + v (9)

Ty3 - + +N (10)

Tzx - G {2H + L (11)

As to boundary conditions, one must require that at:

Z -O : T Tyz M a 5 -0 (12)

zinh : Txz Tyz = az - 0 (13)

() 2+ (1)2 < 1 , yi ±:T = y -O (14)
c a TXY- ay ay(4

IYJy and all x : Txy - Tyz - 0 ay 0  (15)

XI-,' : .a - TW M T -0 . (16)

It is found convenient to seek the solution to the crack plate prob-

lem in the form

u U(P) + u(C) etc., (17)

where the first component represents the usual "undisturbed" or "particular"

solution of a plate without the presence of a crack. Such a particular

solution can be easily constructed and for the particular problem at hand is

u (P) (m-2) x (18)2GA



v - -(m-2 -G z (20)

A (vr-i)' -3 (m-1) + 2 (21)

MATHEMATICAL STATEMENT OF THE COMPLEMENTARY PROBLEM

In view of the particular solution, we need to find three functions

u(C) (xy~z) , v(C)(x,y,z) and w(C) (x,y,z) , such that they satisfy simul-

taneously the partial differential equations (2)- (4) and the following

boundary conditions:

at (-) + (A)2 <1, lyI : T (C).T ( 0 oy (C) - (22)

at z=O :xz(C) Tyz C 0 z ( 0 (23)

at z- h : xz(C) Tyz (C) . az(C) . 0 (24)

at N/x2 +y 2 - :u(C) , v(C) and w(C) are to be bounded. (25)

METHOD OF SOLUTION

In constructing a solution to the system (2) - (4) we use the method

described in reference [1] to recover the following ordinary differential

equation of the independent variable z

d2U(C) + M a2)u(C) + (C) + d-(C) 0 (26)
m-2 + (D +-2 + (m-' 2 rn 2 m-2 dz (20

b d2v(C) +D 2 + M 3 2) V(C)+MC) m dw(C)
dz1  + (D2 - 2 2  m-2 1a2 ) U + m-2 2) -O (27)

2m- 2 d d(C) du(c)  m dv(C) 2 (C)
-- - _ + ( I ) a +(- + - 0 (28)

where the symbols of differentiation a , 2 D2  are to be interpreted as

numbers.

tA
-q-

V.
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Upon integrating the above system subject to the initial conditions*,

(C) (C) (, (c) du(C) dv(C)
U m U 0 V V 0 , 0'dz d- 0

dw(C)- (29)
dz 0

one has after a few simple calculations**

u(C) m- 2 sin(zD) a wo m zcos(zD)a w
2 (m - 1) D 2(m-1) 1 0

(30)
m z sin (zD) °+cos(zD) u 02(m-2) D

v(C) m- 2 sin(zD) , - m zcos(zD)a w2(a - 1) D 2, 0 2(m- 1) 2 ao zD w

(31)

+ cos(zD) v m z sin (zD) a e
0 2(m-2) D 2 0

w(C) - cos(zD) w + m Dzsin(zD) v0

(32)

1 sin(zD,) + m sin(zD) _ zcos (zD) I
m-2 D 0 2(m- 2) D 0

where

0o . m-2- (,u + v) (33)
0 i-1 1 0 2 0

Finally, in order to satisfy the boundary conditions (24 we require that

[mDsin (hD)3 ] uO+ [mhDa 2 sin(hD)] vo-mD [sin(hD)-hDcos (hD)]wo-0 (34)

sinhD m ) 2] + sin(hD) aL 'snDD (-.12-- (m-I1)D)- mh cos (hD) 1] 0o 1- D a I a2

V (35)
-mhcos(hD)3 1 a2 ] v,+ [mha, Dsin (hD)] wo - 0

*11o, Vo, wo, u, vI , W1 are arbitrary functions of x and y

**Note that in equations (30)- (32) we have let

. 0 1 0

v - w
0 2 0

, oin order to simultaneously satisfy the boundary condition (23).
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j -(mh coo (hD)a3 a + sin OD) a ju* - mh cos (liD) 32+ in(illD D 22

(36)
+ (m -1) sin (D) D] v,+ bm sin(bD) Da] Vo "0

or

d~i d 12 dil Fuol [01
d21 d22 d2 [ v[J 0  (37)

de1 d3 2 d 3 3  V

where the differential operators dik are defined as

d 1 mh a D sin (D)11

d 12 - mh 3 2 D sin (D) (38)

d13 -roD [sin(hD) -hDcos (D)]

d (32_MD2) -mhD cos(hD)]
d [sin(hD) + chD11

d --j[ sin(h)+mhD cos (hD)] a 2

d23 = mh a I D sin(hD)23 1

ds - - [sin(hD) + mhD cos (lD)] -a aD 12

dS2 - sn(hD) (MD a 2) +mh a2 D cos(hD)]

d33 mha 2D sin(hD)

Keeping in mind that the differential operators a1 , 0a 2 , D2 obey the

same formal rules of addition and multiplication as numbers, the solution of

system (37) is given by

Uo M X1 (x,y)

v o = X2 (x,y) (39)

VC - xs(xy)

where the unknown displacement functions XI , X, satisfy the differ-

ential relations

QXi -0 i - 1,2,3 (40)
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with

dl dx dl
d11  d12  is

Q = d 2 1 d 2 2 d2 3 i m2 (m- 1) D' sin(hD) {h 2 D2 - sln2 (hD)}

d 1  d 32 d33  (41)

We construct next the following integral representations for u0 , v0

and w0  which have the proper behavior at infinity

u(x, y + g "I P+ IyIQ,) e~slyI + R e (42)T~
0= (42)

+ - n-ie- + S l sin(xs)ds
Vol nal

v0(x~~~~y±)y + COQ2  (' , 2) e- 12+ 'y J(-~2) e 2 ~
0 Vol V-1 (43)

+ I S ( 2) e- Yl}cos(xs)ds
nuil n

V0(xvy-+..o( +00 e-Slyl + e(3 Ase7sy + 42y

+ I S (3)'/ n lyl~cos(xs) ds

n- i 
n

The + signs refer to y > 0 and y < 0 respectively, a - (n1,2,3"")

and B , , are the roots of the equations

sin(Ovh) - (SVh) (45)

sin(yvh)= -(yvh) . (46)

The equations have an infinite number of complex roots which appear in groups

of four, one in each quadrant of the complex plane and only two of each

group of four roots are relevant to the present work. These are chosen toI,

be the complex conjugate pairs with positive real parts. The only real

roots 8V -Yv 0 must be ignored.
/V
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j Finally, an examination of the solution shows that the unknown

functions P , Q , R etc. are not all independent. Assuming, there-

fore, that one can differentiate under the integral sign and inserting

equations (42)-(44) into (37) one finds

Q2 = Q1 (47)

(l+m) a (PI+Pl) +(3m-l) Q1 +2smh Q= 0 (48)
t~l) (1 - cos(O ,b))

... l - SR (49)
OV

hR( - O 1 o h ))RR, (50)
V

R - R (51)

(l+Cos yh Rs (52)

/n =Y .

h()- V (1 +cosy (53)

N(3) = (
%V RV(4

-03 (55)

- n (57)

In order to facilitate our subsequent discussion it is found convenient at

this stage to summarize our results:

(i) complementary displacements*:

iq u(C) (P + z P + m-2 z2 sQ + -m--- z 2 (P + + 1.sly

*It can be shown, that in order to satisfy the remaining boundary conditions

Q3 must vanish. This information is used when writing the complementary

displacements and stresses.

1 I I I I•II
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RV ) [Cx z-- 1 - z @inB 0zi
Vu vhv 2 (m-1) v v

- m-2 1 0 [gn3Z)+ It-- 8z Co63e ))6-B2 (m-1) T -

7 (1 +cos'y vh))' (58)
- V Y~ fk 01 Y-' si vZ

-2 1 mB+--
2(m-1) TV si ; 'v-S yvZ CO(\vJ

a sin(xs)da

v(C f- Ja {[P2 SZ P 3- 2 (m-1) z2 SQ 2(3-1) 2(p 1 +p 2 ) ' Y101] a-1Y

+ ZS 4680t z)e n

Va 02R~V~{8h fo8) 2 (m- 1 ) 0 vz sitO Vz)l
V

m-2 1 m 8Yzco8 z] (59(;,-1) T. snvz+2azCsBZ e- v(9

+ D T (l+,pon(y vh)) ( a 6 - " y s n~
V -1 v Y.-h2(m-1) Yv

m-2 1 myzce(i}e'II}cos(xs)ds
2(m-1) yv [ 9iK~Y vZ)+ , Yvzcsf~ avYI1

~~(CL 8Z{P (P + P2 )-kZQI] *-SlyI

(I (-COS (6 h))* m-2 zc~ )

Vo v Oh O2mi'~ vz>2 (a-) Ovz sov A

+lI w s , m- 2 m Y z C0(z)]
Vo Yvh 2Cmi) siv2(m-1)v

-2 2m17 /'1 =+ j co.(xs)dsa
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e(c). {-2(M-2)Q, e-s yI IRV -o@Vf cs$
0 +1 M- h lc~$cs8z

-~ 8vhhn63v)i a 82+g'~yI (61)

~ (1co~vh) coW.2)- Yh sin±4 72yl~o~
- h 2+J" 'YI

(ii) compementary stresses:

T ()w /S-270.2(l codg) (2
f m RV(sir4 z)+ z Cos($

Yz sin($v) e-/ 2+07 y ~ sncze'~Y}o~sd

m 1 v1 v1 (iV )8z

+ v - siyz e- si va e2 - I S ]asin(a )del'co~s

20G f s%([1 ( ( o~I)8zSin(z) z~ Cs(8 -Oz sn

+ m m I s + 0yh B (zcS(8ffz) v *-/ s2+ 2 Y v0 YZ1UY2]e

/;F+-- -2(64)

TG o2(m-1) T if(v-1~ inyz

+yh zSV1a e'vIcosxd
v

(64)
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[ ~{a F 2 - a 2 z F5-zYs Q + rnI a-s1yI -

+ _~ [(1 -co~h1) CO* Z)-8 Ohsin$ ) ] a ~v~

*+ R (a 2+ 2) (1 -co h.[ saazsiO)
Vol v L h co(8) 2(rn-1) 8v Siv~~

mn- 2 1 rn8z~(N] _-/2+8,Jy 1-2 (m-1) B v Csiu(Ov4z+- " os($Z)u (65)

* /8 24 ~S cos(ctz)e-s7jy

+n- [ ((+coy I) co~y 4-Yhsin(yv~1 ev

r(1 + cofiyvh)
+ v 2) -- YVh- (Cszsny

VM L (sh 2+y 'YvV) Sif(Yy Z

- rn2 1 rn Z)1 m P( -S+YY o~sd
2(m-i1) TV- ( in v m-2 YvZ s(V4] josxsd

'mJ'~~{Ea(P-P) + 2zP--zsQ+2jyisQ QlleIYG 0o 1 2 3 u+1 i

(1- coso h)
- 2 sv Rv 8h V 2 cos P -4Z)---M 8 z 8in(Bsv)

- r-2 1 M /82781Y
rn-i av (snO4 - O~ )Ie (66)

OD (2 +o(~)- co~ si4t)

rn- 1S+yk(-( o ) i~v

A (2.S2 +C,2)/Ti
- n s COS(ct ze/s2+nlyI } in(xs)ds

s-



(c)Ox ([p~ap+ _ a2 1 + ~ le - s l y l

I 1 -R cOs( 8 1 co z) -2~ i(m- ) ]

*(l +coyh) 
(67)

- I ((1 21( cos(Y Z) 2 (m-1) iyz sin(yz'

M- 1~ S s~ o~ z')+ ~I~ }YzCos x~d.7/';~

+ Yi (. (1 [ + cosy)) cos(yvZ - y )h Sinyv)] e- s V y

n-i1

By direct substitution, it can easily be ascertained that the above

complementary displacements satisfy Navier's equations and furthermore the

corresponding stresses a (c) , r(c) , T(c) do vanish at the plate faces
z zx yz

z- 0 and z- h .

Moreover, to satisfy the continuity conditions, one must require

that:

I

yt

/

!,I
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3P 3,-2 z2 SQ m z2s2 (P + p2)
P2  Z P3 2 (-1)Z Q1 - (-1-) Z 1  2

+ Ia cos(ctn Z)
nal

/vVi2T (1-cos(O \)h)) [cmBz i( )+ml + 2 h cs V Z 2(m-) v zsnOvz~

(m-2

- ,-2----- IC1+cos(yh)) c sy z i~ )

+- 1 Rsn~(,z +s+y {M2 [csy z) zo~ vz] CO~sn~,
2(-1 2 2m-

v n-2 2

2 2
c a

2 2

'2 2c a
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fp 3m- 1 2z + m z23(p+

Sl + s P3 + 2(m-1) z2SQl + 2(m-1) + P2 )

1-cosO h
,2Z y'+ 2 a f( Cos( Z) a 2t1 ,z sin(8 z)]

v-i

m-21

2(m-l) [ (sin(z) + 8z cos(8Oz)]l

(69)

vu 2 hv 2(m-1) YV V

-21) sin(yz) + - vz cos(y z)])
2(m-1) V m-2 V

2 200 s2 2

n Snos( az)) sin(xs)ds

() x2 2

c a

2 2
c2 a2

and:
I

4o

/
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1 2 1[s - a z (P1+P2) - : szQ1.

GF--' (1-cos (a Vh)) m-2 _
a hsin(z) 2(-m cos(2-z)]

+ cos(O z) + 2.a-1 z sin( z)} (70)

s 2(m-1) V V

+ cos(Y z) + 2(m-1) Yvz sin(Yvz)) cos(xs)ds -

_ (c) x2 z2

2 20 ; +---+ > 1

2
c a

Thus, by Fourier inversion, one has:

.



1 -5

(P -sP 3 -3m-2 z2 Q m 2 2
(P 2 szp3 -2(m-1) zQ1 - (;-) z s (P 1 + 2)

+ I S n cos(a na)

ao /2 (1-cos(O ~h)) ___

+ IRv v ~ 2 (cosI(a z) - T6:1 oz sin(o z)]I

m-2 1 +- - a z cos(8 z)] 71
2(m-i) F. [iavz m-2 v v

"- (i+cos(y vh))

- m-2 1 [si(y z) +~ m o~zJ2(m-1) V m-2 'Yvz co~vz]

- 2 f c (C)
+ - V( (t,O,z) cos(sE)dE

4T



[SP1 + a2z p + 3m- .22g +P4 Pi
13 2 (m-i)ZS , I J

f2 ( 1-coso v oisi~a ~ +7 R Cos($ Z) B )
-1 /WS02hI. 2(m-1) v i(~)

M-2 1 (snOz + -Oz cos(O z)])
2(m-1) Bv [snmz -2

- -r -2-- (1+cos (Y vh)) - m
a yv2 (coscy z)~yzv-i % Yh v is~ i3z)v2 -2n(;:z)

- m-2 1 (sin~yrz +-~ '''1cs(vz] (72)
2(u-1) Yz) m-2vZCSYZ~

- 2+a2 sc8cz

f ; Sc c) sin(st)dE

2 S ar) nsE

;.L f+ V (9,0,z) cos(sE)dE

b0
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12 1(sP3 - -j s z (PI + P2 ) - -a zQ1]

(1-cos (B vh)) m-2 m
v v ( B [ h j )sin(Ovz) - (m-l) z cos($ z)]

BBh(r-i V 2(m-1))v}

+ cos(o z) + m- ) z sin( )
V 2(m-1) Ov V

(73)
(1-CosY ( h))

+ V-1 S v iv yvh ~ 2(m-1) Sin(Y Z)- 2(-1) Yvz coS(yvz)]
mm

cos(y~z) + - z sin(y z)) -

f C aw o(- -)- cos(s~dE

2 Sc  v(c)+ o (---) 0  cos(sE)dE

where for simplicity we have defined Sc - c and in equations (72)
a

and (73) we have made use of the remaining two boundary conditions:

,(c) ..r(c) - 0 at y - 0

The reader should notice that by adding eqs. (71) and (72) one

concludes that

tS"4 s S coS~~~anZ) S "+ 4_ic V(c)( Oz o~ d

Sn 7 0cos(s)d
t"" (74)

n1i

~~- s(P1 + 2

/
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from which*,

"Sn - -s fa F0c V(E,0,rl) cos(s) as (a n)d~dn (75a)

and

a so - -2s (P1 + ) j- f8 f0 v(-c) (,o,r)

(75b)

cos(s&) dtdE.

Finally, we would like to solve for the unknown coefficients

and RV . To a ccomplish this, we proceed as follows. Using eq. (74) into

(71) and, upon differentiating w.r.t. z once, one has

S 3m-2 m 23 -FzsQ - ;- z + 2)

2 (l-cos(Bh)) 3m-2 m
+ z V. [ sRn(B5z)- COS(

v-l 22m,-l 'in($(0 Z)Vh 2(-)2-

+ cos(O~z) + z sin(O z)]}

(76)

+ (1+cos(yh))[ sin( ) -SC (-) z cosy h)V] ;:-,) sin(vz) -}(;

+ -cs(YVz) + sii-n))]1
A I 2(m-1) ~v V

(2 fSc ( _(c) 0cos(s)dE
q,

* Notice that S is a function of n now.
c

1



19

Utilizing, next, the orthogonality condition*, it is possible to determine
~ av(c)

the coefficients R and R in terms of the function (---'-)y-O

Thus

" f: f c (c) B( h, rn) cos(sE)d& (77)

and

a S cv(c)
R a c (---)yO B(yh,yn) cos(sE)d& (78)

Finally, inserting into equation (65) one reduces the problem to

that of the solution of a double singular integral equation**, i.e.

v(c)  HEX -crack 
(79)

faces

2g 2 2

c a

where the kernel H consists of the sum of three infinite series of

the type found in the through-the-thickness crack.

The explicit solution of this double singular integral equation,

will determine the displacement and stress fields. Unfortunately,

we have not been successful in extracting the solution to the equation

explicitly. It appears, however, that the solution is not separable

either in spherical or cylindrical coordinates.

* See reference [2].
** Eq. (79) may be integrated to give another singular integral eq. with

V(c) (&,O,l) as the unknown.
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PART III

UNIQUENESS THEOREMS FOR DISPLACEMENT FIELDS WITH LOCALLY

FINITE ENERGY IN LINEAR ELASTOSTATICS

I.

/



INTRODUCTION

The Classical Theory of Linear Elastostatics. The fundamental

problem of linear elastostatics is to determine the equilibrium displace-

ment field that is produced in an elastic body of known shape and

composition by the action of known body forces and surface tractions or

displacements. In the classical formulation of the theory the displace-

ments and stresses are required to be differentiable and satisfy the

differential equations of equilibrium in the interior of the body and to

be continuous and satisfy the prescribed surface traction or displacement

conditions on the boundary. This boundary value problem has a history

that begins with A. L. Cauchy's discovery of the equilibrium equations

in 1822; see reference [18, p. 8]. The uniqueness of classical solutions

for bounded bodies with smooth surfaces was proved by G. Kirchhoff in

1859 [12]. General existence theorems for classical solutions were. first

proved during the period 1906-1908 by integral equation methods. The

principal contributors were I. Fredholm [6], G. Lauricella [17],

R. Marcolongo [19], A. Korn [15, 16] and T. Boggio [2, 3]. More recently

G. Fichera has proved the existence of classical solutions in bounded

bodies with smooth boundaries by the methods of modern functional analy-

sis [4, 5]. Thus the theory of the classical boundary value problems of

linear elastostatics is essentially complete.

The Need for a More General Theory. Unfortunately the classical

theory described above provides an inadequate foundation for the analysis

of most of the problems studied by applied scientists in their applica-

tions of linear elastostatics. Examination of any of the numerous books
Ii1
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on theoretical elasticity, beginning with the classical treatise of

A. E. H. Love [18], reveals that most of the problems treated in them

involve unbounded bodies, such as infinite plates or bars, and/or bodies

having sharp edges or corners. Moreover, the stress fields are known to

have singularities at re-entrant edges and corners. Examples of these

difficulties can be found in the theory of cracks; see I. N. Sneddou and

X. Lowengrub [22]. It is sometimes argued that the classical theory is

a sufficient foundation for applications because real bodies are always

bounded and boundaries with sharp edges and corners can be approximated

by smooth ones. However, although this procedure simplifies the problems

from the viewpoint of the classical theory, it makes them inaccessible

to techniques such as separation of variables and integral transform

methods that are used by applied scientiests. Thus the real issue is

whether a mathematical theory can be devised that is sufficiently general

to provide a foundation for the analysis of the singular problems that

are actually studied by applied scientists. The purpose of this paper

is to provide the beginnings of such a theory comprising a formulation of

the elastostatic boundary value problems that is applicable to bodies of

arbitrary shape and corresponding uniqueness theorems.

Remarks on the Formulation of Boundary Value Problems. A

"formulation" of a boundary value problem is a definition of the class of

functions in which solutions are to be sought. The classical formulation

Aof the elastostatic boundary value problem was described above. Many

other formulations are possible. For example, the continuity conditions

may be replaced at some or all boundary points by boundedness or-inte-

grability conditions, the equilibrium equations may be required to hold

in a weak sense, etc. In principle, any formulation is acceptable if

° ... .I
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there is an existence theorem, stating that there is at least one solu-

tion in the class, and a uniqueness theore=, stating that there is at

most one solution in the class. In practice the choice of a solution

class turns on technical considerations. The proof of an existence

theorem is facilitated by choosing a large solution class but uniqueness

is lost if the class is too large. The proof of a uniqueness theorem is

facilitated by choosing a small solution class but existence is lost if

the class is too small. For example, Kirchhoff's theorem on the unique-

ness of classical solutions of the elastostatic boundary value problem

can be proved for bodies having re-entrant sharp edges but in this case

no classical solution exists.

The Role of Existence and Uniqueness Theorems. A pure existence

theorem for a boundary value problem demonstrates that the properties

chosen to define the solution class are not contradictory; i.e., there

are functions with these properties. In the presence of an existence

theorem a uniqueness theorem shows that the defining properties of the

solution class characterize the solution completely. However, a unique-

ness theorem can be even more valuable when no general existence theorem

is known. In such cases it may still be possible in certain instances,

corresponding to special choices of the boundary or data, to construct a

solution in the chosen solution class. A uniqueness theorem then shows

that the solution is the correct one. An interesting example of this

occurred in the theory of the diffraction of electromagnetic waves by a

perfectly conducting circular disk. In 1948 J. Meixner [20] proved a

uniqueness theorem for this problem and used it to show that a solution

that had been published in 1927 was incorrect. Of course, in the absence

of a general existence theorem it is desirable to prove uniqueness in as

--.
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large a solution class as possible since this facilitates application of

the uniqueness theorem in specific instances.

The Boundedness Question for the Displacement Fields. Linear

elastostatics is an approximation that is valid for small displacements.

If the displacements are bounded then by suitable scaling they may be

made arbitrarily small. Hence it is natural to make boundedness of the

displacements a defining property of the solution class. Indeed, this

property has often been employed in constructing solutions of particular

problems. It has also been used by J. K. Knowles and T. A. Pucik [14]

in the formulation and proof of a general uniqueness theorem for plane

crack problems. However, it is shown in this paper that uniqueness holds

in the larger class of solutions with locally finite energy, without

boundedness conditions. This result shows that the boundedness hypothesis

is redundant and the boundedness property, in instances where it holds,

must be derivable from the other hypotheses.

Displacement Fields with Locally Finite Energy. In this paper

it is taken as a fundamental principle that equilibrium displacement

fields in elastic bodies must have finite strain energy in bounded por-

tions of the bodies. Such displacement fields will be called displace-

ment fields with locally finite energy (or, for brevity, fields wLFE).

The equilibrium displacement field corresponding to prescribed body

forces will be characterized among all fields wLFE, by the ,Nrinciple of

virtual work. The class of displacement fields that obey these two

A principles will be called the solutions with locally finite energy (for

brevity, solutions wLFE) of the elastostatic boundary value problems.
I,

The principal results of this paper are uniqueness theorems for this

class of solutions. In particular, the uniqueness of solutions wLFE in/

I-
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bounded bodies is proved without additional hypotheses concerning the

boundary or the displacement field. The uniqueness of solutions wLFE in

unbounded bodies is proved under a growth restriction on the behavior of

the stress or displacement fields at infinity. Xoreover, it is shown by

examples that a growth restriction is necessary for uniqueness.

The remainder of the paper is organized as follows. The class

of displacement fields wLFE is defined in §1. §2 contains the definition

of the class of solutions wLFE in homogeneous elastic bodies of arbitrary

shape, subject to prescribed surface tractions, prescribed body forces

and prescribtd displacements or stresses at infinity. The regularity

properties of solutions wLFE are also discussed in this section. §3

presents the uniqueness theorems for solutions wLFE of problems with

prescribed surface tractions. In §4 the methods and results of §3 are

c-tended to the other classical boundary value problems of linear elasto-

statics including problems with prescribed surface displacements,

problems with mixed boundary conditions, problems for inhomogeneous

elastic bodies and n-dimensional generalizations. §5 contains a

discussion of related literature.

b

A

oj



II

1. DISPLACENENT FIELDS WITH LOCALLY FINITE ENERGY

A fixed system of Cartesian coordinates is used throughout the

paper and points of Euclidean space are identified with their coordinate

triples (x1 ,x,,x ) - x e R 3. With this convention each elastic body in

space is associated with a domain (open connected set) 11 C R' that

describes the set of interior points of the body. The closure and

boundary of 0 are denoted by Q and B = - .1, respectively. The nota-

tion of Cartesian tensor analysis [11] is used to describe the physical

variables associated with elastic bodies. In particular, tensors of

various orders are denoted by subscripts and the summation convention is

used.

The fundamental unknown of elastostatic boundary value problems

is the displacement field. It is denoted below by u, - ui(x). The

notation u i j - aui/Bx is used for the covariant derivative of ui•" The

strain tensor field eij (u) associated with ui is defined by the differen-

tial operator

(1.1) ejj(u) =4 (ul~ + '

It is assumed, following G. Green [7 and 18, pp. 11-12 and 95-99], thatb

for quasi-static isothermal small deformations of an elastic body there

is a positive definite quadratic function of eij,

1(1 2) V Cijk L eij kL

such that for all K C n

7
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(1.3) WK 1i jk eij(u) ekL(u) dx

is the strain energy of the displacement field ui in the set K. The

positivity assumption means that

(1.4) Cijkz eij ekl > 0 for all eij #ejE 0 0

The stress-strain tensor Cjkj is uniquely determined by w if the natural

symmetries

(1.5) c ijk = CjikZ w cji

are assumed. The stress tensor field a i(u) associated with u is given

by the differential operator

(1.6) aij(u) - Cijkd ekZ(u)

The positive definiteness of w implies that a ij CLjkt ekL has a uniquei1 j1

solution eii = i d and w- 1  C ie i a In
ii i ki 7ki2 ij ij- 2 ijl U ij aid.

particular,

(1.7) WK f a (u) ei (u) dx - J a (u) dx

is a functional of a ii(u) alone. A body is homogeneous if and only if

)Cjky is constant in 9. It is isotropic if and only if [11, 18]

(1.8) Cjki =  j 6ki + 116ik 6 jL + 6 il 6jk)

where X and V are scalars such that V > 0, 3A + 2U > 0. The results in

§2 and §3 are formulated for the case of homogeneous anisotropic bodies.

In §4 it is shown that the uniqueness theorems hold for the more general

case of inhomogeneous anisotropic media with bounded uniformly positive

q-



definite stress-strain tensor. This means that the components c jkt(x)

are Lebesgue measurable and there exist positive constants c, and c_> c0

such that

(1.9) c. ei eij Wcjj(x) ej ekg _ c1 eji eij for all x E

and all e. - ejj.

The most general uniqueness theore-s for solutions wLFE will be

obtained by making the class of displacement fields wLFE as large as

possible subject to the LFE condition. Hence it is natural to define the

energy integrals WK(u) to be Lebesgue integrals and to interpret the

differential operators eii in the distribution-theoretic sense. It can

be shown that this choice has the additional advantage that the set of

displacement fields wLFE is a complete space in the sense of convergence

in energy on bounded sets. It was by using such complete function spaces

that Fichera proved the existence of solutions of the elastostatic

boundary value problems in bounded domains.

In the remainder of this section several function spaces are

defined that are needed for the formulation and proof of the uniqueness

theorems. In the definitions n C Rs denotes an arbitrary domain.

The definitions are based on the Lebesgue space

(1.10) L2 (") {u: Q -0 R u(x) is L-measurable, fi u(x)1 dx < ab}

J

and the associated spaces

L2°c (1) - {u: C2 R u C L,(K) for every bounded
• K(1.11)measurable K C f} i

I " r . .. . ... I " = ..... . ... -, . . .
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(1.12) Lnt(L) - {u: i l R u e L (C) for every compact C C fC2

and

corn
L2 m() -LQ) n {u I u(x) is equivalent to 0 outside

(1.13)
a bounded set)

It s ler ha L om(Q CL oc int
It is clear that L(Qm( ) C L2(S) C L2  (Q) C L2  1(). Moreover,

L2 1 (P) - L7(?) L OC(Q) if and only if $2 is bounded. Note that the

10C
condition u 6 L2  (Q) restricts the behavior of u near 3 because the

sets K in (1.11) can be any bounded open subsets of Q. The condition

intu F L2 (Q) is weaker because it does not restrict the behavior of u near

3. All of the function spaces used below are spaces of tensor fields

on S whose components lie in certain linear subspaces of Lnt(n).

The space L2 nt(Q) may be interpreted as a linear subspace of

L. Schwartz's space D') of all distributions on n [21]. Thus functions

u e L2nt(Q) have derivatives of all orders in D'(Sl) and if

(1.14) A = I A1 a~i~ X 2 2 -
0<1 cI<m

(where a - (aca 2 , j)ai a I + a 2 + C) is a partial differential

operator with constant coefficients then Au e V' (S). The notation

int loc corn
Au e L2 () (resp. L2 (), .L2(n) , L 2  (a), etc.) will be interpreted

to mean that the distribution Au is in the subspace L2 n(2) (resp.

L2 (Q), L2(0), Lm(12), etc.). If A, A2 ,' , An is a set of partial

differential operators with constant coefficients the following notation

will be used.

(1.15) L(A,,A, ,A ) ;Q L2 (n) { u I Aju 6 L2 (S),J 1,2,.-.,n}
/n



(1.16) L2 t(A A*,,A ;il) w Lo (a) fu i Au E L2  (Q),j - 1,2,.--,n}

.mt Lmt (mt

(1.17) L2  (A,A2 ,..-,A;;) -L 2 () n {u j Aju E L2 (ntM,j - 1,2,---.,n}
Scorn 2cn

(1.18) L'2 (A ,A ,-",An;n) L2  2) L2 (Ai,Az .,An;Q)

In particular, if (A,Az,'",A } - {81'1/ x I 0 < Il m}

the following notation will be used.

(1.19) L02(n) w L2 (A,, A n ;S)

(1.20) L'2 (0t)n) "L (A, ,A2 ,""

m int mnt
(1.21) LT (I) - L2  (A.,An; )

(1.22) L 2com(Q) - Lcom(A,A 2  -- ,An;Q)

Notations such as uj E L t° (n ), eli E L2 (9), etc. will be inter-

preted to mean that each component of the tensor field is in the indicated

space. With this convention the classes of displacement fields wFE (with

finite energy) and wLFE may be defined as follows.

Definition. A vector field u i on 0 is said to be a displacement

field wFE if and only if it is in the function space

(1.23) E(M) - (u I ui e L2 ° c(n ), eij(u) e L2
)

Similarly, u is said to be a displacement field wLFE if and only if it

is in the function space

(1.24) EL c(S) - (u ui L 2c(f2), eij(u) r L2°

Note that Eoc(i) - E(11) if and only if Q is bounded.

i-
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The terminology used in the definition is Justified by the obser-

vation that if the stress-strain tensor satisfies (1.9) then ej(u) e L2 (Q)

implies COij (u) e L2 (S) and hence u E E(Q) implies

I

(1.25) WO - J i j (u) eij (u) dx <

loc(u Loc

Similarly, if (1.9) holds then e i(u) ",. (n) implies a Cu) 6 L, (a)

and hence u( 6 E.°c(Q) implies

(1.26) w Jij (u) ejj(u) dx <

for all bounded measurable sets K C il.

Each of the function spaces defined above is a complete space

with respect to a suitable topology. Several examples of this will be

indicated. It is well known that L2() is a Hilbert space with scalar

product

(1.27) (uv) - u(x) v(x) dx

Similarly, E(Q) and E1C (Q) are Frechet spaces [28] with respect to the

families of semi-norms defined by

(1.28) PKE(u) - (K ui(x) ui(x) dx + Jaij(u) ai (u) dx]

and

(1.29) pLO(U) - { ui(x) + a i(u) O(u)) dx) 1/

respectively, where K is any bounded measurable subset of $2. In parti-

9toc
cular, if Q is bounded then E (°() = E(n) is a Hilbert space. These
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completeness results play no role in the uniqueness theorems given below.

However, they are essential for the validity of existence theorems for

solutions wLFE. This is evident from the proofs of Fichera's existence

theorems for bounded bodies.

In the definition of EloC(2) the operators ei3(u) defined by

(1.1) are interpreted in the distribution-theoretic sense. Hence the

condition u C E E°(2) does not necessarily imply that the individual

derivatives ui1j  L °c(G). However, it is known that if u 6E Elc(R)

then uij 6 L2(C) for every compact set C C n. This is a consequence of

Korn's inequality in the form

(3 3
(1.30) u <Y I IU 1 2  + I le (u)12(130 | lJL2 (C) - I i IL(K) ej 1 1 L2 (K)

which is valid for all u r Et°c(n), all bounded open sets K C &I and all

compact sets C C K with a constant y - y(C,K). This result can be

derived from the version of Korn's inequality due to J. Gobert (8].

Moreover if 12 has the cone property [1, 9] then one may take C - K in

(1.30). Hence in this case

(1.31) u e E Oc( W) - ui r L 1c(01)

In particuler, for domains that are bounded and have the cone property

(1.32) u 6 E( () ui LS L )
"A

'1

e/



2. EQUILIBRIUM PROBLEMS WITH PRESCRIBED SURFACE TRACTIONS

In this section elastostatic equilibrium problems are formulated,

and regularity properties of the solutions are discussed, for homogeneous

anisotropic elastic bodies of arbitrary shape that are subject to

prescribed body forces, prescribed surface tractions and, in the case of

unbounded bodies, prescribed displacements or stresses at infinity. The

cases of prescribed body forces Fi, zero surface tractions and zero dis-

placements or stresses at infinity are discussed first.

The Principle of Virtual Work. Let Q C R3 be an arbitrary domain

and let u e Eloc(Q) be the equilibrium displacement field wLFE correspond-

cornIng to body forces Fi E L2  (9) and zero surface tractions. Imagine that

the equilibrium is disturbed slightly by changing ui to u + v where v,

is a field wFE from the set

(2.1) Ecorm(4) - E(0) n {v I e i(v) r Lcom(R)}

Let K C A be a bounded measurable set such that ejj (v) is equivalent to

zero in 1 - K. Then WK(O(u)) and WK(C(u + v)) are the strain energies in

K before and after the disturbance. Hence the work done against internal

forces during the disturbance I's WK(o(u + v)) - WK(a(u)). The energy

norm of v can be made arbitrarily small. If this is done and terms

4 quadratic in v are dropped, in keeping with the linear theory, the

difference becomes

(2.2) J oij (u) eij (v) dx - Work done against Internal forces

Moreover, if the body forces are constant during the displacement then

15
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(2.3) F vl dx - Work done against body forces

No further work is done during the disturbance if the surface tractions

are zero. The principle of virtual work states that the true equilibrium

field ui(x) is characterized by the property that the total work done

against the internal and external forces in any (small) disturbance of

ui consistent with the constraints is zero [23]. Thus in the present

case

(2.4) J Y 'j (u) eij (v) dx - f v dx - 0

for all v 6 Ec(0). This motivates the following

Definition. A displacement field ui is said to be a solution

wLFE of the equilibrium problem for the domain Q with body forces

F C Lcom (S) and zero surface tractions if and only if u E Ee°C (11) and

(2.4) holds for all v E Ec"M).

Necessary Conditions for the Solvability of Problems with Zero

Surface Tractions. The fields

(2.5) vi(x) ai + Cijk b xk 9 x ER'

where ai and bi are constant vectors and ijk is the alternating tensor

[11] satisfy eij(v) - 0 in R3 and hence v E Ecom(Rs). In particular,

v r Ecom(g) for every domain n. It follows from (2.4) with this choice

of v that necessary conditions for the existence of a solution wLFE are

(2.6) J Pi dx - 0

(2.7) J (Fi xi- FJ xi) dx 0

]1
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Physically, these conditions mean that the body forces Fi exert no net

resultant or moment on the body. They are assumed to be satisfied in

the remainder of the discussion of problems with zero surface tractions.

Non-uniqueness of the Displacements for Problems with Zero

Surface Tractions. Equations (2.5) define a displacement field that

describes a rigid body displacement [11]. Moreover, since eij(v) - 0 in

R3 the fields (2.5) may be added to any solution u of (2.4). Physically,

this means that the equilibrium displacement fields are determined only

up to rigid body displacements. Hence, the natural uniqueness theorem

for problems with zero surface tractions asserts that the stress and

strain fields are unique while the displacement fields are unique modulo

fields of the form (2.5).

Bounded Bodies and Displacement Fields wFE. If 11 is bounded then

E £C(9) - E(Q) and every solution wLFE actually has finite total strain

energy in f2. More generally, if u is a solution wLFE for an arbitrary

domain 0 and if u e E(S2) then u is said to be a solution wFE. The

uniqueness of solutions wFE is proved in §3 without additional hypotheses

concerning Q or the displacement field.

Unbounded Bodies and Equilibrium States with Prescribed Stresses

or Displacements at Infinity. If 1 is unbounded then, in general, solu-

tions wLFE in fl are not unique. Simple examples of non-uniqueness are

available for the case Q - R3 . The field ui(x) - jxj with constant

bi - bji 0 0 is a solution wLFE in R' with F (x) E 0 and aij(u)

C ijk£ b£ k& 0 since eij(u) - bij and a ij(u) e i(u) - cijkL bij bkj > 0.

A second example is provided by the homogeneous isotropic plate with

domain 9 - {I xIX, e R,lxl < h) and stress-strain tensor (1.8). In

this case ul (A + 2i)x1 , u2 - (A + 2)x2, u, - -2Ax 3 defines a
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displacement field in S with Fi(x) 0 0, zero surface tractions and

constant non-zero stress field a,, - a2 2 - 6Xp + 4p12 , all other a - 0.

These examples show that uniqueness theorems for solutions wLFE in

unbounded domains cannot hold without some growth restrictions at

infinity on ui or ai.

The problem of finding suitable growth restrictions on u or a j

that guarantee the uniqueness of solutions wLFE is a special case of the

classical problem of elastostatics of finding equilibrium displacement

fields that have prescribed stresses or displacements at infinity. Many

problems of this type are discussed in the treatise of Love [18]. To

formulate the problem with prescribed stresses at infinity let

(2.8) SR'. 1 n {x I lxi > R)

and let Om (x) be a stress field that is defined in , for some R,

and has the desired behavior at infinity. A solution wLFE in S is sought

such that aij(u)(x) is close to a"j(x) at infinity, in a suitable sense.

One possibility is to require that aij(u) - UOi E L(SR'.) or,

equivalently,

(2.9) Wn., (0(u) - am) <

This suggests the

Definition. A solution wLFE of the equilibrium problem for an

unbounded domain f2 is said to have prescribed stresses a40 at infinity

if and only if (2.9) holds for some R > 0.
Solutions wLFE with stresses 0Z - 0 at infinity are just the

solutions wFE defined above. Condition (2.9) is correct in this case,

at least for exterior domains where the stresses generated by body forces

F E L20 (f) are known to satisfy aij(u)(x) - o(Ixi-), Ixl - [13].

. ... "-j
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To formulate the problem with prescribed displacements at infinity

let uc(x) be a displacement field that is defined in 9•R for some R, and

has the desired behavior at infinity. A solution wLFE in & is sought

such that ui(x) is close to u7(x) at infinity, in a suitable sense. One

might try the condition u i u_ L2 (,) in analogy with (2.9).

However, this condition is too strong. In fact, it is known that if

u7 - 0 and n is an exterior domain then the displacements generated by
body forces F r Lcom(Q) have the exact order ui(x) - O(Ixl-), lxi Go

[10]. Thus a weaker condit'...i consistent with this estimate is needed.

In what follows the condition

(2.10) 1u - u1- 6 2 0(r), r - c

is used where

(2.11) u 2 " u(x) ui(x) dx

(2.12) a r,6 9 { I r < jxl < r + 6)

and 6 > 0 is a constant.

Definition. A solution wLFE of the equilibrium problem for an

unbounded domain Q is said to have prescribed displacements ui at

binfinity if and only if (2.10) holds for some 6 > 0.

A sufficient condition for (2.10) to hold with u - 0 is

(2.13) ui(X) - O(1X -11 2) , JXI

Of course, the precise order condition on u that is sufficient to guar-

antee (2.10) in particular cases will depend on the geometry of 0 near

infinity. For example, if n - {x I Ix'l < h) then dx - 0(r),
r,6
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r * o, and u1(x) - 0(1) is a sufficient condition for (2.10) with u7 - 0.

If S1 {x j (x1,x2 ) 6 G, x3 r R} where G C R2 is bounded then

far,6 dx - 0(1) and ui(x) - (Ix1l/2), jx] - -, is sufficient.

Ellipticity of the Cauchy-Green Operator. The principle of

virtual work (2.4) with vi E CT(a) C Ecom(Q) implies that the equilibrium

fields ui are weak solutions of the system of partial differential equa-

tions oijj(u) + Fi - 0 in S. If the body is homogeneous, as is assumed

in this section, then the system may be written

(2.14) Aik uk + Fi - 0

where

(2.15) Aik - cijk, 32/axj Bxt

The matrix differential operator (Aik), with coefficients that satisfy

the positivity and symmetry conditions (1.4), (1.5), will be called the

Cauchy-Green operator. Conditions (1.4), (1.5) imply that (Aik) is

strongly elliptic (cjkk ni ?1k Ej L & 0 for all non-zero ni, Ei) and

hence elliptic (det (cij ) E 0 for all non-zero Ci) [12, p. 20].

G. Fichera [5] has used the theory of elliptic boundary value problems

to prove both interior and boundary regularity theorems for weak solutions

of (2.14). The interior and boundary regularity properties of solutions

wLFE that are implied by Fichera's results and methods are described here

_briefly.

Interior Regularity of Solutions wLFE. Fichera's interior

regularity theorem [5, p. 36] implies the following results.

Theorem 2.1. Let il c R3 be an arbitrary domain. Let
in itm, int

u F L2t(Q), e (u) E L nt(Q) and F 2i 2 (0) where m > 0 is an

i i i
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integer. Assume that (2.4) holds for all vj e CT(SZ). Then

ui  2

Corollary 2.2. Let 9 C R3 be an arbitrary domain and let u be a

solution wLFE of the equilibrium problem for S with Fi e LM'comC6). Then

ui ELrm+2int ).

Corollary 2.3. If the hypotheses of Theorem 2.1 or Corollary 2.2

hold then u. E cm).1

Corollary 2.4. Let Q C R3 be an arbitrary domain and let

to 1 0 oc
u FE°() satisfy eij(u) - f (u i~ + uj,i) 0 in L2 (M. Then there

exist constants ai, bi such that ui(x) - ai + uJk bj xk in S.

Fichera proved Theorem 2.1 in [5] under the hypotheses f E Lol),

u 6 L2 (Q). However, the theorem as stated above is i immediate conse-

quence of his theorem. Corollary 2.2 is a special case of Theorem 2.1.

Corollary 2.3 follows from Theorem 2.1 and Sobolev's imbedding theorem

[5, p. 26]. Corollary 2.4 may be verified by noting that u is a solution

wLFE in 1 with body forces Fi - 0 in Q. Thus ui e CO(*), by Corollary

2.3, and u ij + uj i - 0 in Q. The proof that every such ui has the form

ui - ai + Cijk b xk is classical [11, p. 71].

Boundary Regularity of Solutions wLFE. Fichera's theorems on

regularity at the boundary imply the following results (see [5, Chapters

10 and 12]).

Theorem 2.5. Let n C R3 be a domain with boundary B E C . Let

u be a solution wLFE of the equilibrium problem for 11 with

Fi E L °m(I) r) CO(T). Then ui e 6(a) and

(2.16) a (u) nj -0 on MR

where ni is the unit exterior normal field on 3a.
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Corollary 2.6. Let x 0 e 3R and assume that there is a neighbor-
hood N'6(x) - {x I Ix  -x 6 such that aQ n N.(x) CE . Moreover,

let F E Lcm (n) n 6'(Qn N (x )) Then u E Cw( n NCx )) and

j (u)n j - 0 on ZQ n N6 (x 0 ).

Corollary 2.6 is an immediate consequence of Theorem 2.5 since

boundary regularity is a local property. Boundary regularity results

can also be proved when M and Fi have a finite number of derivatives.

The following results can be proved by the methods of [5); see also [1].

Theorem 2.7. Let Q C R3 have a boundary point x0 such that

3SI n N6 (xO) E C k+ 2 for some 6 > 0 where k > 0 is an integer. Let u be a

solution wLFE of the equilibrium problem for Q with F E L com (Q) r)1 2

L k(Q N 6(x 0)). Then u L2 2 (Q N 6 (x)).

Corollary 2.8. Under the hypotheses of Theorem 2.7,

ui E ck( n N6(x0)). Moreover, if k > 1 then aij(u)nj - 0 on

Sn N 6 (x 0 ).

Corollary 2.9. Let Q c R3 be a domain with boundary BQ4 e C

k > 0. Let u be a solution wLFE of the equilibrium problem for 2 with

F E Lk,com(R). Then u E C k(£). Moreover, if k > 2 then u is a
1 2 i

classical solution of the equilibrium boundary value problem with body

forces F Ck-2 L kcom R and zero surface tractions; i.e., u.

satisfies (2.10) and

(2.17) Cijk Uk,ji + Fi - 0 in a

Bodies whose boundary K2 is a piece-wise smooth surface with

piece-wise smooth edges with corners are of great interest for applica-

tions. A class of bodies of this type are the C-domains, defined and

studied by N. Weck [24]. Solutions wLFE in such domains are regular and

" 1 'l I il :! "~~~ ~~ ~~- .. . . .. "j-: ... ":: : 1
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satisfy the boundary condition (2.16) near smooth points of an, by

Corollary 2.8. At edge and corner points of a condition (2.16) is

meaningless, because ni is undefined, and the only regularity property

that remains is the LFE condition. For this reason the LFE condition is

sometimes called the "edge condition" [20].

Equilibrium Problems with Non-Zero Surface Tractions. The formu-

lation (2.4) of the principle of virtual work is appropriate for the case

of zero surface cractions. The surface traction at a point x0 e an is

by definition the vector oij(u(xo)) nj(x) and hence is defined only at

boundary points where the boundary values a i (u(x0 )) and the normal vector

nj(xo) exist. If a portion S C BQ is sufficiently snooth for nj and

boundary values of oij (u) to exist on it then the principle of virtual

work can be extended to include the boundary condition

( ti onS
(2.18) cyij(u) nj -i o S

0 on an - s

To do this the term

(2.19) -J ti vi dS - Work done against surface tractions

must be added to (2.4), so that the extended principle becomes

(2.20) J ij(u) eij (v) dx - f Fi vi dx - ti vi dS - 0

for all v e Ecom(n). Moreover, it is known from Sobolev's imbedding

theorem that every v e E c S() has boundary values v E L2(S) on smooth

portions S C an (1, p. 38]. In the important special case where an is

piece-wise smooth then aij (u) nj exists almost everywhere on an and S

may be replaced by a in (2.18), (2.19) and (2.20).

-j



3. UNIQUENESS THEOREMS FOR PROBLEMS WITH PRESCRIBED SURFACE TRACTIONS

The strain energy theorem for classical solutions of the elasto-

static equilibrium problem with body iforces Fi and zero surface tractions

states that [18, p. 173]

(3.1) W = . a (u) e(

The uniqueness of classical solutions is a corollary. In this section

the strain energy theorem is extended to arbitrary domains a and all

solutions wFE (- solutions wLFE and zero stresses at infinity if r is

unbounded) and solutions wLFE and zero displacements at infinity. The

uniqueness of solutions wLFE with prescribed stresses or displacements

at infinity follow as corollaries. The simple case of solutions wFE is

treated first.

Theorem 3.1. Let u be a solution wFE of the equilibrium problem

with body forces Fi E L (om() and zero surface tractions in a domain

E C R3 . Then the strain energy equation (3.1) holds.

The proof is immediate from the representation (1.7) for W and

the definition of solution wFE, since one may take vi - ui 6 E(n) in

(2.4).
b (1) (2)

Corollary 3.2. Uniqueness of Solutions wFE. Let ui ui be

two solutions wFE of the equilibrium problem with the same body forces

Fi r Ecom (a) and zero surface tractions. Then

(3.2) a ij(u(')) (u(2)) inQ

and there exist constant vectors ai, bi such that

25
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(3.3) u( ) - u Cx) ai + Eijk bj xk inS

Proof . uj U() - u(2) is a solution wFE w'li body forces
i  -i

Fi E 0 in 0 and zero surface tractions. Thus (3.1) holds with Fi - 0

and ij(u) - 0 in L2(0) by the positive-definiteness of the energy.

Moreover, aij(u) E Cw(Sl) by Corollary 2.3 and hence aii (u)(x) B 0 in f2

which implies (3.2). Finally, Corollary 3.4 implies ui(x) - ai+Cijkbj xk

which implies (3.3).

Corollary 3.3. Uniqueness of Solutions wLFE with Prescribed
3  (1) (2)

Stresses at Infinity. Let S C R be unbounded and let ui  , ui  be two

solutions wLFE of the equilibrium problem with the same body forces Fi,

zero surface tractions and the same stresses i at infinity. Then (3.2)

and (3.3) hold.

Proof. By hypothesis, both al (u(1)) -CO* and oii(u ()) - cc

are in L2(01,a) for some R > 0. It follows that the difference field

(1 U) -(2) (- L. Henceluio
ui - i - ui satisfies u e L (Ru) e ui is a solution

wFE with body forces F, = 0 in S2 and zero surface tractions. Equations

(3.2), (3.3) follow as in the proof of Corollary 3.2.

The uniqueness theorem for solutions wLFE with prescribed dis-

placements at infinity will be based on the following generalization of

Theorem 3.1.

Theorem 3.4. Let u be a solution wLFE of the equilibrium problem

with body forces F E L com (SI) and zero surface tractions in an unbounded
i 2

domain Q C R3 . Moreover, let u satisfy

(3.4) -2 dr

eJ

lui .. .. dr a
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for some R > 0 and 6 > 0. Then u is a solution wFE in Q and the strain

energy equation (3.1) holds.

A proof of Theorem 3.4 is given at the enct of the section,

following the statement and discussion of the remaining uniqueness

theorems.

Corollary 3.5. Uniqueness of Solutions wLFE with Prescribed
(1) (2)

Displacements at Infinity. Let a C R3 be unbounded and let u( ui

be two solutions wLFE of the equilibrium problem with the same body

forces Fi, zero surface tractions and the same displacements ui at

infinity. Then (3.2) and (3.3) hold.

Proof. By hypothesis lu(k) u , -Ir, a 0(rl/2), r * m, k - 1, 2.

It follows by the triangle inequality that the difference field

uI) - u(2) satisfies mu, O(r I/2), r -O or equivalentlyi  i u aife Ur,S ,w

(3.5) 1u! 2 -0(r), r w
r,6

which implies condition (3.4). Moreover, u is a solution wLFE with

Fi - 0 and zero surface tractions. Hence (3.1) holds with Fi W 0, by

Theorem 3.4, and the conclusions (3.2), (3.3) follow as before.

Uniqueness Theorems for Problems with Non-Zero Surface Tractions.

The uniqueness theorems proved above are valid for arbitrary bounded and

unbounded domains C C R3. No local or global restrictions are imposed

on Q or M. If a portion S C M is smooth enough for the surface

tractions Oij(u) nj and surface integrals (2.19) to be defined then

solutions wLFE with non-zero surface tractions ti on S are defined by

the principle of virtual work. The uniqueness theorems for solutions

with zero surface tractions extend immediately to this case because the

o,

i-
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difference of two solutions with the same surface tractions ti is a

solution with zero surface tractions.

Other Growth Conditions at Infinity. It is clear from condition

(3.4) of Theorem 3.4 that condition (3.5) is only one sufficient condition

for uniqueness. Generalizations are obtained by replacing (3.5) by

(3.6) ful 2 - 0(p(r)), r

where p(r) is a function such that

(3.7) FR P(r)-' dr

If 1 is an exterior domain ({x I lxi > RI C S2 for R > R0 ) and if

the body is isotropic as well as homogeneous; i.e., (1.8) holds, then

the uniqueness theorem can be proved under weaker growth restrictions

than (3.4). Indeed, under these conditions Fichera [4] has proved that

(3.8) ui(X) - O(1) ui(x) - O(Ixl - ) and ai (x) O(Ix1-2)

M. E. Gurtin and E. Sternberg [10] have rederived this result and proved

the complementary result that

(3.9) a ijx) - O(1) - ui(x) - O(jxj 1) and aij(x) - O(1x - 2)

Moreover, these results are based on an expansion theorem for biharmonic

functions in a neighborhood of infinity and are independent of 3. Thus

the uniqueness theorems for solutions wLFE with prescribed displacements

or stresses at infinity in homogeneous isotropic solids are valid for

arbitrary exterior domains f) under the conditions

(3.10) ui(x) - u7(x) -o1), lxI CO

.7

/b
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and

(3.11) ai (u)(x) - o7j(x) - o(1)• lx

respectively.

Proof of Theorem 3.4. The idea of the proof is to put Vi - ui

in the principle of virtual work identity (2.4), as in the proof of

Theorem 3.1. However, this cannot be done directly when u is a solution

wLvE because v E ECom (Q) must have compact support. Instead, let

vi(x) - (x) ui(x) where

(3.12) O(x) - 0((Ixl - R)/6), R > 0, 6 > 0, x E R3

and i E C (R) is a function such that *'(T) < 0, 0 < IP(T) 1 and

(3.13) - <F I: T <0{0,T>i1

These properties imply that E C(RS), 0 < (x) < 1 and

[1, lxj R
(3.14) (x) <

0, lxi R +6to I co r+

It follows that for all ur E Loc(0), v - *uE Ecm(Si) and

(3.15) viJ - Oui, + 0, ui

Moreover,

(3.16) ,.(x) -'((xij R)/S) x/ 6xi

and

(3.17) supp c Q R,

I~
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With this choice of vi

(3.18) e j(v) - * ei(U) + 0 ( uj + , ui)

and hence

aij(u) eij(v) " 4 ii(u) eij (u) + cijj(u) 0,i uj

(3.19)

- ii a(u) eij(u) + R*- 4'(JxJ - R)/6) 0ij(u) 2i uj

where - xj/lxl. By assumption Fi E Lc°
0 (n). Choose R0 so large that

supp Fi C {x I IxI I R0 } and substitute vi - 4 ui and (3.19) in (2.4)

with R > R0 . The result can be written

f aO(u) vii(u) dx + 6-, J ,' O(u) xi ui dx

(3.20) Rs

- U i  dx - 0

The goal of the remainder of the proof is to calculate the limit

of equation (3.20) for R - and to show that the limiting form is the

energy equation (3.1). To this end define

(3.21) f(R) - fa 4(6-(IxI - R)) aij (u) e i (u) dx - J Fi u i dx, R > RO
By equation (3.20) an alternative representation is

(3.22) f(R) .- a-' f 0(6-(Ixl - R)) aij(u) xi U dx

The properties of f(R) that are needed to complete the proof of Theorem
.4

3.4 are described by

Lemma 3.6. f e CI [Ro ,m) and has derivative

(3.23) f'(R) - -6-  J 4'(6-'(xI - R)) Oij(u) eij(u) dx > 0

R,8

-'VI
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In particular, f(R) is monotone non-decreasing on [R,,). Moreover,

(3.24) f2(R) R , uI 6 P'(R), R > R0

where M2 _ (6-1 c1) ma W I

Proof of Lemma 3.6. Form the difference quotient

hffR+ h) - f(R)} ) h1'{p(51 (jxj-R-h))-pC(I-R)

(3.25) R,R+h+6

X Caij(u) e 1jCu) dx

The quotient

(3.26) h_ f4{*(6-Ix I -R-h)) -P(6- 1(x I -R)) x~ I6 l(6 Ix-R)) h 4'0

uniformly for x in bounded sets in R3 . Moreover, a j(u) ejij (u) is

Lebesgue integrable on bounded subsets of P.. Thus passage to the limit

h -- 0 in (3.25) is permissible by Lebesgue's dominated convergence theorem.

Hence fl(R) exists for all R > R. and is given by (3.23). It is easy to

show that the integral in (3.23) defines a continuous function of R which

is non-negative. The monotonicity of f CR) follows.

To prove the inequality (3.24) note that (3.22) implies the

estimate

(3.27) If(R)I 1 6-' I4'6dIR) aij(u) X- U iI dx, R > R

moreover, by repeated application of Schwarz's inequality

(3.28) I 0 ij (U) ~i Ui (a ij (U) ~i akj(u) ^k)/ (u j) 1/2

3 /

(3.29 C~i (U) 2 (u
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U) a~ (U) A k 3 j l ( i~ )~ 2 l/2 (j (k (U) )2 1/2
°j kj u, lj , co i ,,j: (u ( j

(3.:30)
3 3 3
S(a (Ui) 2 < -1 :C2 (u) - ai (u) a ij(u)

Now e ij - 7ij a akt together with (1.9) imply

(3.31) c < e "i a <c o a a
i7ij cii- ii ijk. id- 0U C ii

for all aij - Oji. Combining these inequalities gives

(3.32) Iaij(u) 2i u c 1/2 (a i(u) eij(u))l/
2 (U u )V2

Substituting in (3.27) and using Schwarz's inequality again and equation

(3.23) gives

if( R) I 1 c f2I ,P'(6 1(xI-R))j (ari(u) ei (u))1/2 (uj U) 1 / 2 dX

, 6

_-1/2 P 1/2 (6 1'R)/ 2 1 l,

where P- Max 1*'(x)I. Squaring (3.33) gives (3.24).

Proof of Theorem 3.4 Concluded. Lemma 3.6 implies that f(4-)

exists as a finite number or 4. It will be shown that f(+-) - 0. There

are three cases to consider.

Case 1. 0 < f(+-) < 4. In this case there exists R,> R0 such

that f(R) > f(R1 ) > 0 for R > R1 . Hence (3.24) can be written

(3.34) -f(R) >k- 1 .u.l ' >R
(~~') -dR 1-fi-J - f 2 (R) Rut6 ,RR

and integration gives

/
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aE -2

(3.35) L.-1 - I Ur,dr R > R,f(RI) f (R) - r,

In particular, since f(R) > 0 for R > R1,

M2  2R

(3.36) f( ) >  ]ul-26 dr for R > Ri

But this contradicts hypothesis (3.4) of the theorem. Hence Case 1

cannot occur.

Case 2. f(+-) < 0 and f(R,) - 0 for so~a R, > R0. In this case

0 < f(R,) < f(+-) < 0; i.e. f(+-) - 0.

Case 3. f(+co) < 0 and f(R) < 0 for all R > R0 . In this case

(3.34) and (3.35) hold and the latter can be written, since If(R)I - -f(R),

(3.37) T 1 + -2  lUlr 2  dr, R > R

f(RH T- f(R1)I 1  r,6

Hence condition (3.4) implies that f(4-) - 0.

It has been shown that (3.4) implies f(+-) - 0; that is,

(3.38) lim J (6-(xi-R)) ayj(u) eij(u) dx - i Fi u i dx

Since P(-'(Ixl- R)) is a monotone increasing function of R for each

fixed x e R3 and tends to 1 everywhere when R - m, (3.38) implies equation

(3.1). In particular Wh < because f, Fi ui dx is finite. This

completes the proof.

A

/
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4. UNIQUENESS THEOREMS FOR OTHER EQUILIBRIUM PROBLEMS

The purpose of this section is to show how the methods and results

developed above can be extended to the most general equilibrium problems

of linear elastostatics. Equilibria subject to other boundary conditions,

equilibria in inhomogeneous anisotropic bodies and n-dimensional general-

izations are discussed. In each case the boundary conditions for dis-

placement fields wFE and wLFE are defined by appropriate subspaces of

E(W) and Eloc(92), respectively, and a corresponding form of the principle

of virtual work is given. Regularity and uniqueness results for the new

problems are indicated without proofs. In fact, the proofs of sections

2 and 3 are valid with minor modifications.

Equilibrium Problems with Prescribed Surface Displacements. The

case of zero surface displacements is discussed first. Suitable subspaces

of displacements fields are

(4.1) E0 (Q) - Closure in E(S) of Ecom(n) n {u I supp u C il

(4.2) El0 c (Q) - Closure in E Lo() of Ecom () n {u I supp u C

YLoc
The topologies in E(Q) and E (Q) are those defined by (1.28) and (1.29),

respectively. The notation

(4.3) Ecom(4) = Ecom(9) r E G2)

A is also used. A solution wFE of the equilibrium problem with body forces

E Lcom() and zero surface displacements in a field u G E0() that

satisfies (2.4) for all v r E0 (S). Similarly, a solution wLFE of the

same problem is a field u E E 0 c (Q) that satisfies (2.4) for all

35
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v e E~Om(Q). Problems with non-zero surface displacements

(4.4) ui(x) fi(x) , x e

may be reduced to the preceding problem if there exists a field

u6 E lc(a) n (u ICu°
0 ) C Lcom(Q)). Then ul - ui - ul is a solution

11 2

wLFE with zero boundary displacements.

The remaining boundary conditions can be formulated only when aa

is piecewise smooth. It will be assumed that M is a C-domain in the

sense of [24]. For such domains the unit exterior normal field ni(x) is

defined and continuous at all points of M except edges and corners and

one can define the normal and tangential components of vector field on

M by

V T

(4.5) ui ft u i + u i , u = (Uj ij) Vi

Moreover, ui Vi 0 for all ul, v. and hence

(4.6) iinUiV V+ U TT

Equilibrium Problems with Prescribed Tangential Surface Tractions

and Normal Surface Displacements. Suitable subspaces of displacement

fields are defined by

(4.7) E (S) - E(S) r) {u I uV = 0 on a}

(4.8) EE°c(0) - Ek°c(Q) n {u I uV - 0 on a}
V

The existence of u and uT on 3Q for all u E E Loc(Q) follows from Korn's "'

inequality and Sobolev's imbedding theorem. A solution wFE of the

equilibrium problem with body forces F. C Lcom(Q), zero tangential
3. 2

surface tractions and zero normal surface displacements is a field

I
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u e E (f2) that satisfies (2.4) for all v E r CD. Similarly, a solution

_ocwLFE of the same problem is a field u E E (l) such that (2.4) holds for

all v r E (Q) - E ( 2) n E cm(n). Problems with non-zero surface trac-
V V

tions and displacements are treated by reducing them to the preceding

case through subtraction of a suitable field.

Equilibrium Problems with Prescribed Normal Surface Tractions

and Tangential Surface Displacements. This problem is dual to the

preceding one. Appropriate classes of displacements are

(4.9) ET () E( 2) r) {u I ut , 0 on a.Q}

(4.10) E9°C(Q) - E°(S) ) {u I u T 0 on

Equilibrium Problems with Elastically Supported Surface. Physi-

cally, this corresponds to the case where surface displacements produce

surface tractions that satisfy Hooke's law:

(4.11) aij(u) nj + a u i - 0 on M

where a > 0 is defined on M. A solution wLFE is a field u G E £c( )

such that

(4.12) J aij(u) ei(v) dx - Fi vi dx + 8ui vi dS - 0

for all v E Ecom(SI). Identity (4.12) is the principle of virtual work

for this problem, the last term being the virtual work done against the

induced surface tractions by the virtual displacement v. It follows from

(4.12) that (4.11) holds at smooth points of a2.

Equilibrium Problems with Mixed Boundary Conditions. A mixed

problem that includes the preceding problems as special cases can be

formulated by decomposing M into five portions and imposing one of the

. j
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boundary conditions defined above on each portion. Thus, if

(4.13) ai - S U S2 U S3 US 4 U S5 (disjoint union)

and

(4.14) Et°C (Q) = E°c (Q) r {u I u = 0 on Sz, 1u. = 0 on S2' U 0 on S3 }m3

then the principle of virtual work

(4.15) aij (u) eij(v) dx - f i Vi dx + J Ui vi dS - 0

fo. all v E E com() - E loc() . Ecom(Q) characterizes the solutions of
m m

the equilibrium problem that satisfy u - 0 on SI, uV = 0 and

( ij(u) n )T " 0 on S., uT = 0 and (aij (u) n.) =0 on S3, cij(u)nj = 0

on S4 and aij(u) nj + S ui = 0 on S.

Regularity and uniqueness theorems will be discussed for this

mixed problem since it includes the others as special cases.

Regularity Theorems. The interior regularity properties of

solutions wLFE of the mixed problem follow from Theorem 2.1 and are

exactly the same as for the case discussed in section 2. Concerning

boundary regularity, it can be shown by the methods of Fichera's

monograph [5] that if Q is a C-domain of class Cc such that So - interior
corn

of Sk in M is a Co manifold for k - 1,"',5, and if Fi e C() n 12 (n)

then solutions wLFZ of the mixed problem satisfy

u e C( L S' u S' u So U So S) n L2 1oc(Q). The condition

ui E L 'o (), which follows from Korn's inequality and Sobol:v's the r!-

is the "edge condition" that is needed for uniqueness. The boundar:

conditions on S2, S3 and S. are not discussed by Fichera in [5] b :

be treated by his methods.

L-
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jUniqueness Theorems. Solutions wFE of the mixed problem lie in

(4.16) E3(A) - E(11) n fu I u - 0 on S1, uV - 0 on S2 . UT - 0 on SS)

and satisfy (4.15) for all v e Em(f). The strain energy theorem for the

problem is

(4.17) Woin aij (u) eij (u) dx +I -1f50u. udS jF, u.dx

where the first equation defines the strain energy for the mixed problem.

The uniqueness of solutions vFE is an Immediate corollary. Solutions

with prescribed stresses or displacements at infinity will be defined by

(2.9) and (2.10), respectively, as n the surface tractions problem.

Moreover, the strain energy theorem, Theorem 3.4, extends to solutions

wLFE of the mixed problem. In fact, the same proof Is valid because if

u E ;(1) nd,# CO(Ra) then v - ju E E (C) -mE(O) C ne (0). The

uniqueness of solutions wLFE of the mixed problem with prescribed dis-

placements at infinity is an immediate corollary. It can also be shown

that the displacement fields for the mixed problem are unique except in

* the special case of the pure surface tractions boundary condition (S- &7).

Inhomogeneous Bodies. The uniqueness and energy theorems given.

above remain valid if the constant stress strain tensor cijkt is replaced

by a field Cijkt(x) that is Lebesgue measurable in S2 and satisfies (1.9).

* The interior and boundary regularity theorems of section 2 are validJ when cjkt(x) has sufficient differentiability in 0 and fi respectively;

cf. [1, p. 1321.

n-Dimensional Problems. Fichera (5] has developed his theory for

an n-dimensional generalization of the equations of alastostatics. All of

the theorems given above extend to this n-dimensional problem with only

1.. ..... ...
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notational changes. The cases n I and n -2 are applicable to elasto-

static fields that are functions of only one or two of the Cartesian

coor~dinlates.

li



5. A DISCUSSION OF RELATED LITERATLRE

Fichera's paper (4] of 1950 provided the first significant exten-

sion of Kircbhoff's uniqueness theorem to unbounded domains. His result

(3.8) implies that equilibrium fields in homo3eneous isotropic bodies in

exterior domains have finite energy if the displacements vanish at

infinity. The uniqueness of equilibrium fields in such bodies is an

Imediate corollary. Corresponding results for fields whose stresses

vanish at infinity follow from the 1961 result (3.9) of Gurtin and

Sternberg [10]. The author knows of no general uniqueness results for

anisotropic bodies in exterior domains or for bodies whose boundary is

unbounded.

In Fichera's monograph (51 of 1965 the existence and uniqueness

of classical solutions to elastostatic equilibrium problems in bounded

domains with smooth boundaries is proved by the methods of functional

analysis. This provides an alternative to the classical Integral equa-

tion methods cited in the introduction. However, the formulation and

techniques employed by Fichera can provide more general results.

FIchera's semi-weak solutions (Lecture 7) are essentially the solutions

vFE of this paper. Hence, Fichera's results (Lectures 7 and 12) imply

the uniqueness of solutions vFE for bounded do=ains and boundary condi-

tions for which torn's inequality is valid. For the zero surface dis-

placements problem the inequality holds for every bounded domain. For

the zero surface tractions problem it holds for domains with the cone

property.

41
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The literature on uniqueness theorems in linear elastostatics up

to 1970 was surveyed in a monograph by R. J. Knops and L. E. Payne [13]

published in 1971. This work also contains uniqueness theorems for a

class of weak solutions. However, the hypothesis that the displacement

1fields are continuous in U restricts the scope of these results.

Uniqueness theorems for plane crack problems were proved by

J. K. Knowles and T. A. Pucik in 1973 [14] under the assumption that the

displacements are bounded, but not necessarily continuous, at the crack

tips. The elegant differential inequality method used in this work

provided the inspiration for the proof of Theorem 3.4.

The methods employed in this paper to prove uniqueness theorems

for solutions wLF in arbitrary domains were introduced by the author

during the period 1962-64 in a series of papers on boundary value

problems of the theory of wave propagation [25, 26, 27]. The article

[27] contains as a special case uniqueness theorems for elastodynamic

problems in arbitrary domains.

,!
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PART IV

COMPLETENESS OF THE EIGEN FUNCTIONS FOR

GRIFFITH CRACKS IN PLATES OF FINITE THICKNESS

1
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Introduction.

E.S. Folias (1] has constructed the displacement and stress fields

near a Griffith crack as an expansion in eigenfunctions. The eigen-

functions were derived by an operational method due to Lur6 [2] and the

question of completeness arises. The purpose of this report is to

prove the completeness by a constructive method. The method employed

is to solve the boundary value problem by Fourier analysis and to

evaluate the resulting integrals as residue series. The terms in these

series are precisely the eigenfunctions used by Folias.

N
r

.4'
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Notation.

A system of Cartesian coordinates (x,y,z) is used. The plate

occupies the region defined by

<x < <y<m, -h z h

The crack is defined by

-c x c, y= 0, -h z h

i

J

q
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The components of the displacement field in the stressed plate are

u(x,y,z) , v(x,y,z) , wcx,y,z)

The corresponding stress tensor components are

U ( v + UW)+2Gau
Ox 41 +aKy 3z ax

au av

xz X) ax zx

au 3v aw avov X + 2G v

3v 3w
.ry = G(-. -) *trz

yz (H iy Zy

u + a w Bw
z)+ 2G

The displacement field satisfies the field equations

2 2
S2u 2 u, 2u 2 3 u 3v 3w

x 3Y7 azza ay Z 0

a1 2v +2V a 2v 2 a 3u 9v Dw+7 + 7.cZ+ + )
32W 52 32 + 2 W tU +V F) - 0

ax ay .3z a a a a

where a 2 The bouary conditions are
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S0 y 0, oz  0 for -c x,y<-, z -±h

V 0, Tzy 0, y -a 0 for -c<x<c, y=O±, lzj'h

u,v,w = (1) for x 2 +y2 , z h

Symetries.

x y z

u(x,y, z) odd even even

v(x,y, z) even odd even

w(x,y, z) even even odd

If follms from the symnetries that

v- 0 , = 0 , a- 0 for IxJ>c, y=o, Izl hax W

0u 0 LW 0 for lxj > c, y-- 0 jzj hy Dy

whence

T2W 0, T =0 for jxj > c, y 0, I zl h

Moreover, if
I.
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u- (x,0, Z) 9:+ *~U(X,±,Z)

[u(x,,z) =u+(x,,z) 
- u-(x,O,z) ec

then

au au
[u] [W~~- ] z=0 for -<x<-, jz ~h

[w] UHL =u 0 for < x < - Iz J< h even in y[u]--L [. -- 0 for <x <-, Iz z< h

while

u au + [v] = 2v+  etc.) odd in y

Note: these vanish at points of continuity.

Application of the Fourier Transform in x and .

Define

^ I eipx
u(p,y,z) = /-k_,I2 f e u(x,y,z)dx

(271)

etc.

u(p,q,z) = -3i/2 7 e-iqy UG(p,y,z)dy

e-i(px+qy) u(xyz)dxdy

etc.

1"' etc.

1
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Then

P - ipu ,2-) -Pu
ax

auy 3y(iy) - etc.

However, u,v,w and their derivatives may have discontinuities across

the crack. Note that, if f(ky) e LIR) for k- 0,1,2 and

f C C2 (R.) n C'R_) and f(0±) , f' (0) are finite

" 0
(f' (q) f.TT1/ + f) e-'qy f I y)dy

(21) 0 -
o -. 0- 7

(2,r)7 (e 1 D f(y)] + e 1  f(y)] + iqJ e- 'qy f(y)dy)(27rx) 12 (e0y T]+

- f /2 + iq f(q)
(27r) 1

and hence

(ft')^(q) + - 12 iq (f') (q)

(27r)

fi. q qf(q)
1/2 " iq - /2 "

(27r) (27r)

These results and the symmetries (p. 3) imply

'I



i.i

6

() ~ =iqiu

2 (1 /12(Bu 2- au. auA

y o q u -y (Y) (p,O+,z))
aetc.

v 2 1/2A

(y) i 0qw

(j-L - -q) :/ v o -3. '-

Taking the Fourier transform of the field equations (p. 2) and using the

above results gives

d2u p2- 2 2=,)/2 q 2 - p 2/2d
--- " u-q u- ,- *'o+a2('P u- pqv"-i) Vo+iP~z)=O

dzO

d2v. 2 2- - .2 O+a - xu.q2-vzq L'21/2- .0 dq

S.

3' w 2 2

S- G- ,a. + a .. iq -- q) "vo --+Z P 0

deq 
pi

J2



7.

2- 0

(P+2)7 2  (2 p + q 22 (  1/2 3uq a p(j )  () 0 + a 0])O
dAv 2 2) 2 c 12. -2

-~~(p + q va q~ + qv- ) Cr) 12Liq v+iq a2 vo]
dz7

2 2' 2 a2  &2 1/2 3wA 23v"

Note that

f(x) is even , f(p) is even and

f(P)-/2 f cos px f(x)dz - F f(p)

0

f~x =(~)/2f cos px f,(p)dp
0

while

f(x) is odd f(p) is odd and

f (p) " -j (1/ J sin px f(x)dz - -i Fsf(p)
0

f2 1i 2 -1/2
f W(X) " i q-) / sin px f(p)dp" sin pXF f(p)dp

f.- f si sxFfpd
0 0

The analogous formulas are valid for functions of y . Hence the

symmetries, p. 3, imply
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-iU -iV, ; W

where U , V ,. W are real-valued. In fact,

U " sin px cos iy u(x,yz)dxdy

00

V 2 cos px sin qy v(x,y,z)dxdy
00

* *
W f J cos px cos qy w(xy,z)dxdy

0

Hence the differential equations for u , v , w on p. 7 are equivalent

to

A 2 _ a 2p 'di a 2p(p U + q V) - (p 2 + q 2)U. -J 2 S'/[ 0 pa 2 Fco]
d2  2dW 2 2 2 2 1/2rF 2

d2V 2dW a2q~p U + q V) - (p + q )V =j )/[ (l+a2)qFv 0]

2d2 W 2 dU dV 2 2 2 1/2 3w 2 9v
(1a d, + a -+ q (z) -(p + q2)W -q- [Fc(y)o +a Fc(j.)

This can be written as a 2nd order 3 x 3 matrix system of ODE's,

.Inael

namely

V V Tl
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where, if U,- (UV,W)T (T transpose)

1r dk + dU C

- 1 a

2 0 2
-a a2P2 a.2 q

C -a =a 0  -a 2q2

Note that

AT -A, BT --B, CT -C

It follows that L is formally selfadjoint with respect to the scalar

product
2

j In fact, integration by parts gives



*A (TV) f(UT A T~' + UT B VI + UT C 'V)dz 1

z 1

drUTA VI *d V UT 2 - z (,T A VT UIT B V - UT C V)dz

z I

UT A V' UTh AV + dr B

zi

zz2

- (tT  UTA TB + UT Vdz

z 1z1

z2  
z

lu, + f (A ' + BU' + cU)TVdz
zI

z2

z 2UV + (L U, V)
zi

where

UtJ,V] UT AV, U,T  A V UT B7

If the index notation

4 U " (U1 ,U2 ,U3 )T. V_ (V1 ,V2 ,V3)T

is used the bilinear form [U,V) can be written
'5

i~I - -



m2

[gy] - UV U2V (l+a U3V1

- UjV - uV2 - ('+a )UIV3

'.a2pUIV3 - a2qU2V3 + a2pU3V + a2qU3V2

Boundary Conditions Associated with L

The symmetry properties of the displacement field wrt z (p. 3)

imply that

Y Jz ,O " ( z) z - 0 , (W ) z , ,.O 0

It follows that

V-o, .0 , WCO) -0

Note that

B.C.1. U(0) - , u0(o) -0 , U3 (0) -0

is selfadjoint for L ; i.e.

U and V satisfy B.C.l - UV)'Z- 0

The B.C.'s at z - ±_h imply corresponding B.C.'s for U . To write

then note that (p. 6)

I

I - -
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y -- W

" 7xz~~ = - ip w)i= -iG( - p )

Tyz G- q (z

. c1/2A d-"i
O uX(ip+ i q~ ~ v 0 +P) + 2G Tz

uX(pU + qV)+ (X +2G)j CD 2 1/

a2+l Cu 2 1/2 A

a -

since

2G 2G 2G a 2+1
.--,  -- m-2 , 1 +-

a2  m J!, ma2 -2a 2 m , m(a2 -1) = 2a 2

n 2a 2  A a2-1 m 2a 2

It follows that

1 _p .o - .q,, ).o
a2+ 2 1/2

p U(h) + qV(h) + a - " 0 ( ) v0(h)

4

I
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B.C. 2 UjCh) -pU 3 0)-O0 Uj(h) -q U'3 0) 0

2
p U 1 h) +q U2 h) + a+1 Uf()- 0

1 2 a-i3

is also selfadjoint for L .In fact, if U and V satisfy B.C.2 then

[UV]Z.. z= P U1V.3 + q U2V13 - (a 2_1)U 3 (P V1 + q V2)

-p L13V1 - q U3V2 + (a 2 _1)'(P U1 + q U2)V3

-a
2p U1'V3 - a2qi U2 + a2p Uj~ + a cq U3V2 =

IBy Proleml for U -(ul'U2,!j 3 ) T *(UPVW

L U- (p2 +q )U - 0 <z <h

M0U(O) + N0U'(0) - 0

KMtT(h) + NhUI' ) -

where

FS -P pa2 Fcv

( )1/2 - (1+a2) ql F v0

aC 2 + a2F(

MO[ H fr ,No a.c(p)

0 0-0- 0
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0 0 -P 1 0 0

P- 0 0 -q ,Nh 0 1 0

p q -0 0 0 a2+1
a2_1

and

0

Uh) =  0

Method of Solving the BV Problem for U,V,W

To solve the BV problem the general solution of L U - p2 + q2 )U =

and BC at z - 0 will be constructed as a function of the parameters

u -U(o) , vo  V(o) , 6 -

The B.C.'s at z = h will then be used to calculate u0 , v0 ,

Solutions of the Equations L U - (p2 + q2 )U - U .

This equation, written in terms of components (UIU 2 ,U3 ) = (U,VW)

is obtained from the system on p.8 by setting the right-hand side equal

to 0 . Note that this system coincides with Lurd, p. 150 (3.2.12)

under the correspondence

-i U -u -.iV v W 0-W

ip , iq-a 2 , - p2 +q 2 )'D 2

dIV p +q V d 8
ip -i U) + iq(-i +-a pVU + q + v -
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Lur has given a complete solution of the system L U = (p2 + q2)U in

equation (3.2.15), (3.2.17). To adapt them to the present notation write

s 2  p /q2 , s / 2  a 0 , D - is

cos zD- cos isz =cosh.;z , sin zD=sin isz= i sinh sz

Then the solution (3.2.15) becomes

22a z sinh sz p2 u + p v0 + w
U = (cosh sz)u0 + a s (psz + pqv + pwd)

V = (cosh sz)v + a2 z sinh sz q2v0 + ql,,.,
0  - (pqu0 +

s w. + s - z :osh sz)(pu0 + qv0 + w6)

This solution satisfies B.C.1 at z = 0 . The solution (3.2.17) becomes

sinh sz a2  isinh sz + z cosh sz 2 2

U s U6 + 221 .2 ,- s2 pu; + qPV + qS2ifo0
s 0 2(a +1) -iTs +0

V2

S2(a2+1) -- s 3s2

a2  z sinh sz pu qv+s2w0W (cosh sz)w 0 - a +sinh
(a2 (a+1)

This solution satisfies

B.C.l, UcO) -0 V(o) =0, d - 0

.and

... U , dU(O) dV 04.. ''
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Solution Basis for L U= (p2 + q2 )U

u 0  , vo w6 0 gives

Sch +a 2 z sinh sz p2
!Uz' cosh sz +- p

a2 z sinh szV1 "" s pq

la sinh sz

__-_
(sin s z cosh sz)p

u0 n 0, v0 in1 w1 0 gives

a2 z sinh szU2 "- s pq

2 c 2 z sinh sz q2V2  cosh sz + q2

2
- snh sz -z cosh sz)qS

U0  v=O 0, w= 1 gives
a z sinh sz

2a2 zsinh sz

b' W sinh sz +a2  si sz -z cosh sz)s 7 (  s"

Similarly

#o

,I u-1, v' 0 w o 0 gives

LV
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sinh sz + a c sinh sz)s a+ 1 (z cosh sz s

2(a 2+1) S s

25

U4 a 2  z sinh sz

2aZ) s P 4
2(a +1) s

a2  z sinhsz

2 (a2+1) S s

u 0 v = , w0  0 gives

a2s sinh s z

2(aUaa+ +1)

VS sinh sz a a2  siiih sz2

2 + (z cosh sz -

2(a 7+1) S

U6 --a2 (z cosh szs-inh sz)
2 saa~a +1)

6  a2  sinh sz)

= 2 (z cosh sz q
2(a +1)

116 l cosh sz - a sz sinh sz
2(a2+1)

It is evident from the B.C. at z = 0 that these six solutions are

linearly independent and hence span the solution space of
L U= - p2 + q 2)U.

2 2

Solutions of L- (p2 2 - (z)

The variation of constants formula will be used. For this purpose
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it is convenient to write the equation as a 1st order system. The

equation has the form

A fl + B U' - C sU=F

where

s+ ap a pq 0

C sS1-C= a 2pq s + a 2q 2 0

0 0 2

Now A> A)1, whence

1 0 0

A"= A11 2 A 1/2  A112 =(A 1/2)T = 0 1 0

Thus

A 1/2 +i A+A' 2 B U -A-1 /2 C SU=A-1 /2 F

Put

U1

V A "U= U2

v±+aU 3

S3
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V1

= A-1/2 V v V2

Then

V' + (A-I / 2 B A- 1 /2)V' - (A- 1/ 2 Cs A-/2 )V= A 1/ 2 F

or

V, + BA V' - C V

where

BA A" 2 B A 2  
- BT

CA"A-1/2 C3 A
-112 =T

U A-/2 FB

Explicitly,

0 0 -p
a2  [1

B a  2 0 0 -qA (1+a 2 1/2
p q 0

&

s2 + a2 p2  a2pq 0

2 2 2 2
CA= apq s + a q 0

0 S2

0 0
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A 1st order system equivalent to the above 2nd order system may be

obtained by setting

Y-V, z=V'

x= Y~ = V,

Then

Y' V' z, Z V z BAZ CAY +

and

.CA -BAIX +~

or

0X' =MX+H(z) , H- (n)

where

C=(A -BA)

b A fundamental matrix for X' = M X is a 6 x ,6 matrix solution -(z)

I of {, 0(Z) M 0 (Z)

An explicit representation of O(z) can be derived from the solution

basis for. L U- s2U . Indeed, each solution Uj - (U3 Vj Wj)T of
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L U j - gives a solution Xi of Xi' * M X , namely

Thus, in view of the B.C.'s at z = 0

O(z) = X1 x2 (1+a ) 1/2X6 X4 X1 C+a 2)-1 /2X3)

M2 M-12,

U(1 U2  l+a2)-1/U 6  U4  U5  (1+a 2)1/ 2U3

V, 'V2  c)-/v 6  V4  V )-l/2V3

(1+a2)1/y C )11 W2  W6  (1+a2)1 "2 V4  (1+a 2)1I 2W5  W3

Ul' U2' ( )-1 /2U6, u4 ' u so )-1/2,

11, (21 )-/2i6t v4 ' Vs' c5 -l/Z
(1+a 2 11%4 1/2W2 , IV6, f )II 4, (1/2 if, 1 '3

where UJ , V3, WJ are defined on pp. 16-17.

The fundamental matrix makes it possible to calculate a solution of

X' MX + H, namely
z

X'z) = O(z)'-f 0-() H(4)dr

0

Indeed,

X' O*(z)' 0-i(4) H(4)d4 + O(z) 0'1(z) H(z)

0

M MX+ H

Moreover,
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x(o) 0 0

Thus the general solution of X' - H X + H is given by
Z

x z) - 0(z) xo + 0(z) J 0(-)l H(;)d%
0

The direct calculation of O)-1 is difficult, but note that if

and

1 T
E(z) y X(z) P X(z)

then X'- MX

E'(z) = X(z)T P X'(z) X(z)T PM X(z) 0

because

and hence

V T RPM

Thus E(z) = const. 31 solutions of X' I M X . Take X(z) O 0(z) X0

(X0 C R6 arbitrary). Then

2Ez) (~ XTP T T2 (Cz) - (0(z) Xo0) P 0 (z) X0  O(z) P O(z) Xo

. X P X0  2E(0) X c R6

0 0o
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It follows that

,(z)TPO(z) P Vz c]R

Since P is non-singular

(P-1 O(z) 'T P) O(z) - 1

whence

O(z)_1 = p-1 0( z) P

Thus

C*) x(z) t Zz) X0 + (z)P. f O( )T P H( )d.
0

Solution of the B.V. Problem of p. 13.

Recall that

j=C,) = (U1 U2 (1+a 2 1  2  U U 1 (,21/2 U3)

2 1/2 2 1/2X0 " (u0 v0 (1+a2 w0 u v (1+a1 w0)

Thus the solution (*) satisfies B.C.1 (at z 0 0) u , s w 0

Thus if we write

z

X (z) 0(z) p- f 0(4)Tp H(4)dr

then substituting in (*) gives



24

U1 (z) - €1 1 (z) u0 + "1 2 (z) v0 + (1+a 2 91 2 *1 6 (z)wO + Xi(z)

U2 (z) - 02 1 (z) uo + 02 2 (z) vo + (1la 2)1 2 026 (z) w + ICz)

(1+a 2 )l/ 2U3 (z) - 431 {z) u0 + "3 2 (z) V0 + (1*a2) 1/ 2 "3 6 (z) w + Xw(z)

or (see p. 21) if U(z) - (z) , V (z) - XC(z) , W"(z) - (l+a2 )-1 /2X7(z)

U z) = U (z) uo + U2(z) vo + U3Nz) w, + UI(z)

V(z) = V'(z) u0 + v
2(z) vo + V3 (z) w6 + VT(z)

Wcz) - II(z) uO + 12(z) vo W3 (z) w + WT (z)

Thus (p. 15)

a2 z sii sz 2 +U(z) = (cosh sz) u0  s (pu 0  pqv0 +pwo)+U(Z)

a2 z sinh sz q2 0

V(z) = (cosh sz) vo  2  s (pqu 0  + qw ) + V(z)

s cinh sz +a2  sinhsz _ z cosh sz)Cpuo + qvo + w) + WF(z)

To complete the solution of the B.V. problem of p. 13 the initial values

u , must be chosen so that the B.C.2 at z - h is satisfied. The

derivatives U',V',W' are needed. They are given by

a2  sinh sz + sz cosh sz 2
V '(z) - s(sinh sz) + I s )(pqu0  qv 0 + qwo) + Vf ICz)

a2
W'(z) - (cosh sz)w +T -sz sinh sz)(pu0 + qv0 + wo) + I '(z)

Thus the B.C.2 (p. 13) gives

* o

. . . . . .... .. . . . III
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a 2sinh'sh +sh'cosh'sh 2
uS(sinh sh)uO +-2 - )(~ 0 pv+ wx

Ssinh sh pa r~silh sh _h cosh sh)(pu+ qvO+ wt)
p s WOs 0 0 0 -

U"IF' (h) - p VF (h) -0

V Oh) -q W (h)

=SCsinh sh)v +a sinh sh +sh cosh sh (pu 2 o+w6

sinh sh a2 siahsins
-q 2 s -h cosco h s hu+ qv + w)

+ V(h) - q e (h) - 0

p U~h) +q V(h) + a +1 I~

-p(cosh sh)u + 2  hsn s P2- q

a a 2 h sinh sh 2
+ q(cosh sh)vO + s pqu + q vo+ qw6)

a2+1 a2 +1 a 2
+ (=7....) (cosh sh)wAI + --- sh sinh sli) (pu 0 + qvO w~l)

a -i a-

+pUh)qV~~()+a 2+1)1T 2 1/2A

This is a system of linear equationis for u0 iv0 ,wI of the form

d1 u0  d,2 0 + d23wl - f2 (p,q)(- -vWI(h) + p Wwrh))

d3 1U0  d 32v0  d3 pwl - f3(pq) -p ET (h) -q e (h) -1 )Vw I (h)

2 1/ZA(n-. v(h))



26

where

a22 2 2
dll - s(sinh sh) + s- (sinh sh + sh cosh sh) - (sinh sh - sh cosh sh)

a s(sinh sh) + a2p2 h cosh sh

a2 sinh sh a2  sinhsh
d12 =-r pq( + hcosh sh)-- pq ( h cosh sh)

- a2pq h cosh sh

a2  csinsh a2 . (.i sh.hoh )

di a T pC + hcosh sh) -R sinh sh - 2 p  h cosh sh)

a2 ph cosh sh - p sinh sh
S

d2 T pq (s sh + h cosh sh) a 2 pq s sh h cosh sh)

= a 2pqh cosh sh - d12

d +has2 q2 csinh sh + h cosh sh) a q2  s hs coshsh)
22 s(sinh sh) - s s

= s(sinh sh) + a2q2 h cosh sh

a2 sinh sh sihsh a 2  sinh sh
d 723"- q + h cosh sh) -q - q h cosh sh)

* - q sinh sh + a2qh cosh sh

a2  3 h a2 2 h a2+1 a2
d3 -p cosh sh + p p sinh sh+T rpq sinh sh- (-7 ") shpsinhsh

a-
a2  a2+1 a

"!U -p cosh sh + (r psh- C 1+)T psh) sinh sh
a2  2 a 2

p pcosh Sh+T psh - ) sinh sh-p cosh sh- =p sh sinh sh

a -i a -i
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a p2 h sinh sh as sh a+d 32 - -r p- q'. -os co-h sh q sih sh

aa

a2 a2  a 2 +1

= q cosh sh + T qsh sinh sh - qsh sinh sh

aa -1
a2  -2

s q cosh sh - qsh sinh shs

C-j~~) .a2  a.

- q cosh sh s n qsh sinh sh

d33 _ a2 p2 h'sinh sh +a 2  2 h sinh sh a a+1 cos sh- - +1  a  ssnhh

a-i a2+1

a 2 a a2+1 osh
a" sh s h sh sinh shsh

casaa-2 a-

CO oshl - sh sih sh

!a

The Cofactors of Q - (djk).

Let Q k = (cofQ)jk

Ql= d22d33 - d32d23

(s sinh sh + a2q2h cosh sh)(= cosh sh- - sh sinh s)
a-i a-i

!! " ~~Cq cosh sh -- _q sh sinh s)C+ Rsinh sh- a2 hcosh sh)
a 2

(q cos 2h q aZ 2iM s)(Rs ha2  - scosh co)

= --[(a +1)s sinh cosh - ash sinh2 + )a2q2h cosh 2  a4q2h2s sbyh coE
a -1
21 a2 2  a4 2+q + [;S snsoh coash]

(a 2+1)a 2ci 2h 2_2 a2eh) sn
[ a s~ianh oasq 2h) cosh2 + s h) sinh

as ~ 2  +j' 2 h 2 s sinh cosh
a-i 1l- ai

'Il

Im , , . . - . ... . .... . . i 1
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aqhcs 2  2 2 a2s 2 28a 2q Zh 2 cosh 2  a s+ hsjnh2  1 ~2q)+P sinh cosh

aia2-1 s (a2-1)

.a2 (s 2+q2)h + .2a2q2h  a2 (s 2+q2 )h cash 2  sinh csh

a2-1 a2-i s (a2-1)a 2 s2+q2) a2 sh 2 sh 2 a(s 2+q 2 + 2

M csh2  + a sinh 2sh
a-i a -i s(a-i)

Q12 = - (d21d33 " d31d23) - d31d23 - d21d33

(p cosh - a .psh sinh)(- a sinh +a 2 qh cosh)
a- I

2 o 2 a2

(a pqh cosh) cosh - sh sinh)

= - P sinh cosh + a2pqh cosh2 + a 2h sinh2 - p sh sinh cosh
(a -i) a2-1

pqh cosh2 + a4 sh2  cosh
a-I aZ-i

= a h + (a2pqh+ a . (a4+a2)pqh) cosh2

a-i a -i a--1

+ (- sl) sinh cosh

- a apqh (i + -- c sh - sinhcosh

-p La h coshsh - Psinh 2sh
a -I a -i

QI3 d 21d32 - d31d2 2

2
(2pqh cosh)(q cosh - ",-" q sh sinh)

a -i

(p cosh - 7 psh sinh)(s sinh + a2q2h cosh)
a-
2

(cosh - - sh sinh)-ps sinh)
if a -1

a phs 2 sinh2 sh -ps sinh sh cosh sh

L ti



~29

a2 a2

a4phs 2 +aphs 2 coh 2 h si2sh 2
a -1 a-

Q21 - " -2d3 d32d13)= d32 d13 " d.2d33

= a2

(q cosh- - 2 qshsinh)(a2phc csh-p---)

2 2 h2  slh

(a 2pqh cosh) ( - cash - a 2sh s2nh

2pqh cosh2  a4~ssinh cosh a ix22
a2  s csh

a- a-i a2-

+ (-a ) sinh cosh

=- a~-~oh h 
s n s=l

a -I aa- i

a2 = 2 d3 1d13

ssinh ap cash) ra2+l cash-

Cs~ ~~- -j-- hsih

aa- a-i

p csh -cpsh sinh)(a ph cash - s. sinh)

(a2 +i) a2s2h a2 (a2+)p 2h !as2 a4 2 sh2

. .l c~ah scos 2 cAsh -Q12 s cosh

a-1 l a -1 a -

' 2 2 2

= (s~ si h + I?.2 csha+ cash - s sinh s -4

( cosh aps2 hCoh2 -i) (a2 c!s P - a2 2 h) cosh2

a-i ai

si+ ch -) sinh +cashaalsjf s Z cosh":~ ,22s2 aa ( 2  p s 2  a

a i + P- - s-nh cosha a-i

:1.
• ~ ~ ~ ~ 2 2 .... J.

+ ",~ ..... 'in cosh....I



s2(a2 + ) + p2(a2 siah cosh 30

s (a' 21 )

a -"" cosh h + 2 's sinh 2sh

a -1 a -1 2s(a -1)

Q23 - (dlld32 - d31d1 2) - d31d1 2 - d1ld32

- (cosh - a2 sh sinh)(a 2p2qh cosh)
• 2

(s sinh + a2p2h cash)(cosh - a sh sinh)

a -1Scash + - sh cosh sh- s snh2sh

a -1 a -1 2

Q31 - d 12d23 -d 22d13

- (a 2 pqh cosh)(- R sinh + a 2qh cosh)
s

- (s sinh + a 2 q2h cosh)(a2h cosh AM si~~)
~S

- a2phs sih cosh + p sinh 2

a -1

a (a2 .,h os(p ca2 h osh - Zs sih)

Is 22 2

(a c)sinh +h)ah cosh)~if

a: --

,- °

.'I-... ..
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(a'pqh cosh)(ah(p-q) cosh + q- sinh)S

(a2pqh cosh sh)(p-q)(a 2h cosh " _ sinh)S

Q33 = dlld 22 - d21d12

= (s sinh + a2pn cosh)(s sinh + a2q2h cosh) -a4p2q2h 2 cosh2

s2 sinh2 + (a 2p 2sh + a2 q2 sh) sinh cosh

s 2 sinh2 sh + a 2sA sinh sh cosh sh

IQI det(dk) can be calculated from Lure, p. 153 and the correspondence

(see p. 14)

ip ~ a ,3 iq 2 ,is -D

This gives

IQJ - 2a2h(is)3 sin(ish)(1 + 2ish l

2 3 s i sh

- 2a2h s3 sinh sh (1 + sinh 2sh2sh )

Solution of the System on p. 25. We can solve by means of the relations.

3

Thus

*1
L.

V. ~-..
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IQI u0  Q 1 + Q1f 2 +Q1 3

M* IQI v0  Q12f1 + 22 + Q32f 3

iQI W6 - Q13f1 + Q23f2 + Q3f

The only -real zero of IQ(s)f is at s = /p+-7=0 Thus

V- real (p, q) (0, 0)

u0(p,q) I _jQ.(p,qlfl(p q)

v,(p,q) I
j =1

3 Q '.3(p,q- (p q)
j=l Q~)

Substituting for uOjvO,w' in the equations on p. 24 gives

A

Residue Series Representation for u(p,y,z) , V(P,Y,Z) , W(Ppyz)

The equations on pp. 4-8 give

A~~yz ='y 
-upqz e"y U(p,q, z)dq

(2w) (21T)

A-i r y V~~~zd

v~py~z = n Je' WV(p, q,z) dqI(,YZ (21r)1/
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In particular,

u (p, q, = 0) -i f e yq u(p,q)dq
(2wr)

v(p,y,O) f eY ____ ~d
-v 1y,o 2 VO(p,q)dqaz f(2 7rlf

_wpy0 1 . iYq w,(~~d

Now the equations on p. 32 and p. 24 give U,V,W,u0 ,v0 ,w6 as meromorphic

functions of q for each fixed p . Thus residue series for the above

functions can be obtained by deforming the contour in the upper half of

the q-plane for y > 0 (lower half for y < 0). The poles of the

integrals U,...,wl are the zeros of IQ(s)l . The cofactors q)

are holomorphic in the q-plane. Examinations of the formulas for

U',V',,W and fj (p,q) shows that these functions are analytic everywihere

except at s = 0 , because P-1 = 0(s-2) Thus special care is

necessary in calculating the residue at s = 0 (q - +ilp!)

Zeros of lQ(s)l

There are two families of zeros

1) sinh sh= -i sin(ish) 0 - ish- isnhnr n 0,1,2

Thus

Sn- -- i ,p2 + q n- (C )

2 . 2~ n,2)

L q0 " i lIl
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These are simple zeros of IQ(s) I for n 1 . However

IQ(s) I - 0(s4) , s o

2, q2 2  2 P)(q iI -)(P2 + q2)2 (q - il) (q + ilpl). (2ip)Zqip)

Thus qo is, in general, a higher-order pole.

sin '2ish 2ish + sin 2ish)
2sh 2sh 2sh

Zish = 2ish = 2Bh sv -p

2 2 2 2 2 2p +%-v8- O- (p + 1), q i O

Calculation of r(z)

F(z) is defined on p. 13. Now on y 0±

TV= G --Sy  + ) =0

Tzy = G(jy' + y) -0

Thus

au au(x,0+,z) 3v

c = -F
SFs o " - - S o" + p F cvo

Pc Ca) 0 c(.v

Thus F()

4e
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(!E)1/21 (z) - p Cl-a 2 ) FCv0

(*)1 /]F 2 (z) =-q (Cla 2) FcVo

)/2 (z) =- (1-a 2 ) Fc Cz) 0

Calculation of IJ,VlWlUIf ,V"" W '

From pp. 18-19.

H(z) = z] = _1/2(zi

PH() = CA 03(0 z()]
0 7

Write

011(z) 1(z)

OCz) = [21 Cz 22z)

Then

1iT W ' 21Tc()

sT( ]lz P-I) 22T

(4C) 0

= I~°  T
Hence T) 2 lf]

, 1 2T 
- 21T -G

V . oOTl r 
Tpr 2 G
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f (Z) P~- 0T P H(i )

( 11 (Z) 0 12 (Z) I A C1 21T (G

1021 (Z) 022 (z) i ~22T WU(J

021(z) CA 1021 U0+02Wo2T((1

Thus (pp. 2 3 -2 4)

= JA1 1 (0 2 (z0 2 ~(T -12l(e)~0lQ)A/F~d

if()- 114 U5 U) 112 Ze ) A )

,21(, = ~l 2( 1 2  1l 2 )= 2 2 U 1 1 6)Tl 2  /f(

4021T( M (Al 2(1M4, U2, U3, )Al1/ 2 )T = A1 2 (e,~J5 U 3'6 )TA/

A-1/21 2 (z)o 2 2Q)A-1 /2 = -g4zUSzUz)AlO -5Ul 3 I, C

s +aq -pq 0

1/ 1-/ 1 2s2 2P2 0 c -1A-AA 4apq +~a0 Cs(l~a) 00 (1+a 2J

lA- ±.f±~1PAI 0 (Z (T A~Y~ 0~T 6 (CA1/ U))T~zU(z)

Put
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M1(z) = ,() ()3() M2 (z) = Cz)u2(z)u6(z))

Then

{1 z M1Cz)A'l 1 C)T - *z)C-1M2(C)T~r;d
0

hf'(z) = {M(z)Al1 (z)T -MC)MzT (z)

+ J ~j~zA 4 MC)T" _ Mqz)C;'M2C)I Qd
0 N ( ) -~

Similarly,

D~(z) - 1I (X X1iX)

-f A- 112(0 2 2 z) 22 T (0 - 021 (Z) C~ 021TC())Al1/ 2 lr(r)d;

0

A-1/2 022 (z)o 22T (C;)A- 1 / 2 = (U4'zTJ5 '(z)TJ3 (z))A 1 'U ,() ,j)U3' (;))T

-1 Af4()Cl 21T(Cw)l/2 01, (z)U 2 , (C-6 z) A-12- -1

0

ifT"(z) - {Mjl(z)A 4lMjCz) T 
- M(z)C-lM,(z)TI F'(z)

+ f {M Cz)A-MTc - M(Z)CS M2I (4)TI r(C)dc

0

A IF" (z) + B IrT (z) - CsU'T(z) -A{Nqj(z)A'M~) tjcZc; Cz)T} rcz)
-1s
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An alternative derivation is as follows.

Try UFT (z) Y 1 z)C2 (z) + * U1z

U'(tz) tq(z) 2Cz) + 2zCl)

+ M (z) U'(z) + M (z) 1'(z) 4- set -0

UF (z)z)C 2(z) + tM (z)U, (z)

+ Nq(z)U2(z) + M (z)c,(Z)

A "BUT -C s UTA fj z)?!C z) + A 1M Cz)*Cz) F z

Thus

M (z)C'(z) + M2 (z) 711(z) =

M(z)UCz + M2z)U,(z) = A-' F(Z)

or

( u 2 u6  U4 US 1 , [-'r

or

,0c (Z (A-O1F

Note that

(Z A t2 0 1 0( r1 2  A 1
* ( z A / J 0 0(z )



Thus (p. 22)

A1/2 -(/ C -A1/2  A)

0 _r

. r-/ -A 0Ocz)T sl/ _ /CS-/ 1rl20 )r 12

( Al1/ 2  0 /2t 0 _o 38 gi v es

-1/ 0 1 ' 2J 1"0 00 (Jr tr-1/2 0
(-0i 2 Ai12(0 })( A1/2]

and

A2  ) fl/ 2  0)=f 5  )L o A' 21 to 01 2J t -AJ

(TCs 01 ,00(z) fc5  01

() 0 AJ 0 AJ

or

0 ~ 1  S 0) 11 (z)TC T]

Applying this to the system on p. 38 gives

'I~' * z r 2 ( Z) M. (z ) - (

f1-fc;1 0 )fM(z) "2~T (Z)[Cs 6 o
(~~~J (oNq -AJj (z) Tzit -ALA

- -1
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-1 T -

U2' C ( 0 - Mi (Z) FZ)

C;'M~oT(Z) (z),

- ( c T(Z)

U(z) f I {M(Z)A4lM1,TC) -Mp 2 C-c 12T(Q) ()

0

0 ()T [Cs 01()t A 00(Z)

= ii(Z) MjT(z), 60 -A. bM (Z) Mj (Z)) ( -A.

MJ -M 2C -m
T T

- ~s l - MITAIMJ

.4 Calculation of Coefficients in the Residue Series.
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(p, q, z) V VV M (p, q, z) V[4 V V

The Poles %= -i4F2 Z S Pi% n1,3..C~=j)

cosh srh = Cos isn h =cosh alp a cos nw _n

sinh s h - -i sin is h u-i sin nn~ - 0
n n

(_1)n 0 h,;
2(a +1-)

2.M2 (p~qn,h) 0 0,n_ _)

2( +1)

a2h _,n Ah n _n

2hz a2hpC-l,)n

M~C~ch) a1il (-) +1) an
22 2 a

nn

22aa2hhq2 n

a 2 hpq_ a a2hp2 0

14j(p,cyh) 2 s& z- n2-n--1 n

1 0 .a 2 2 n
2 (a+1



- a~. - -~42

2

0 !:rhp(-1)n

M(p 1 % nh) -0 ,,(_,fn

2(a +1) 2( a .1)

For asimple pole at q -qO IpI

Res (eiYq u0(~) - qi

e urnP Jim q-q0) uo(p,q)1

For a double pole

{iYq u (p, q' -'m aq 2 iyq u(~)

Res { 0 ? { q0) u01 *q(q-q ) 1101]~q)

ei'1PI Res uO (p, q) + iy e)'IPiI a-2(u0)
qO

For higher order poles, correspondlingly higher order powers of y appear.
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